
Upstream DAQ Technology Review

● 100s Buffer – Firmware

● Criteria based assessment.

David Cussans

29/07/2020

Outline

• Introduction to 100s buffer

• Stream Formatter

 Split ~ 320 GByte packet from buffer manager into 4kByte packets for storage

• NVMe Storage

 Compressed data written to two drives in 100 sec.

• Integration with DUNE DAQ

• Readout Operation Modes

• Response to “Known Failure” scenarios

• Criteria Based Assessment

 Features

 Adaptability

 Reliability

 Maintenance

 Resource

29/7/20202 Upstream DAQ Technology Review | David Cussans

Bandwidth Requirements (TPC)

• 2590 ADC channels per APA

• 2 Msample/s, 12-bit

• → 60Gbit/s raw data

• ~ 10% overhead for headers etc.

• Factor ~ 2.6 compression (on limited ProtoDUNE study)

• → 3250 MBytes/s data rate to buffer

29/7/20203 Upstream DAQ Technology Review | David Cussans

Message/Data flow for 100s buffer

29/7/20204 Upstream DAQ Technology Review | David Cussans

Firmware Part

29/7/20205 Upstream DAQ Technology Review | David Cussans

Software Part

• At initialization:

 Set up size of Super Nova capture

 Write to IPBus register over Wupper interface (using Felix routines)

 Set start location of Super Nova data in NVMe

 Write to IPBus register over Wupper

• During run, on receipt of SN trigger:

 Write to IPBus register over Wupper to initiate Super Nova capture

 Monitor progress of capture

 When complete, update start location of SN data in NVMe, ready for next
trigger

 Read SN data from NVMe drives

 Write to IPBus register, receive AXI4 packet converted to full-mode packet.

 Combine data from two NVMe drives, strip headers, check CRCs, transmit to
back-end DAQ.

29/7/20206 Upstream DAQ Technology Review | David Cussans

DUNE Block Formatting
Firmware

29/07/2020 Technology - ESDG -
Rob Halsall

7

Technology - ESDG - Rob Halsall

NVME Format Block

NVME
FORMAT
BLOCK

AXIS 256
@250MHz

AXIS 256
@250MHz NVME

DRIVE
R
IP

DRAM
BUFFE

R
IP

29/07/2020

AXI4
L

AXI4
L

Technology - ESDG - Rob Halsall

NVME Format Block Internal

1
:1

 F
IF

O

AXI4S
256

AXI4S
256

S
P
LI

T
T
E
R

AXI4S
256

H
E
A

D
E

R
 I
N

S
E

R
T
E

R

AXI4S
256

C
R

C
3

2
 I
N

S
E

R
T
E
R

AXI4S
256

1
:1

 F
IF

O

AXI4S
256

PA
D

D
E

R

AXI4S
256

AXI4L

R
E
G

IS
T
E
R

S

STATS
MODULE

29/07/2020

250 MHz250 MHz

IPBus
• Reset/Control/Error Recovery not

shown
• Padder pads to 4k boundary.
• Splitter cuts into 4k block
• CRC32 will move inside Header

Inserter block

Technology - ESDG - Rob Halsall

NVME Format Block Internal -
implemented

1
:1

 F
IF

O

AXI4S
256

AXI4S
256

S
P
LI

T
T
E
R

AXI4S
256

H
E
A

D
E

R
 I
N

S
E

R
T
E

R

AXI4S
256

C
R

C
3

2
 I
N

S
E

R
T
E
R

AXI4S
256

1
:1

 F
IF

O

AXI4S
256

PA
D

D
E

R

AXI4S
256

AXI4L

R
E
G

IS
T
E
R

S

STATS
MODULE

29/07/2020

250 MHz250 MHz

IPBus
• Control Path, Stats & CRC not

implemented yet
• Enough blocks written to test the design
• Physical top layer test bench for timing

closure tests – meets 250MHz
• Integration of format block with NVMe

firmware underway

Technology - ESDG - Rob Halsall

NVME Super Packet to Sub Packet

Super Packet
1

• Super Packet (Large) is broken into multiple sub packets which are 4K Bytes and are labelled with
a Header (32B) containing super packet no, sub packet number, CRC32, payload cycles and flags.

• The super packet number is constant for all its sub packets and the sub packet number
increments fro 0 to N where is the number of sub packets -1 contained within the super packet.

• The last packet may have padding (zeros) added and payload cycles will be lower in size in the
header of the last packet to reflect this

Super Packet
2

Super Packet
0

4064 Bytes 4064 Bytes 4064 Bytes 4064 BytesH H H H

Sub Packet 0

Pad
Zero

s

Sub Packet 1 Sub Packet 2 Sub Packet N

29/07/2020

Technology - ESDG - Rob Halsall

NVME Sub Packet Format

8 BYTE - SUPER PACKET COUNT 8 BYTE - SUB PACKET COUNT
8 BYTE - FLAGS & PAYLOAD

CYCLES
8 BYTE - ETHERNET CRC32

4064 Bytes

HEADER

PAYLOAD

• HEADER shown is a proposal of a general form – field, sizes and flags
• Header now inserted as a single clock cycle 256 bit wide word for simplicity of design – doubled in size

over previous slides
• Packet is 4096 Bytes with 32 byte header and 4064 byte payload
• Some flexibility in field sizes and header contents
• Uniquely identify packets & detect errors

29/07/2020

NVME + Formatter Block Test Bench

NVME
FORMAT
BLOCK

AXIS 256
@250MHz

AXIS 256
@250MHz

NVME
DRIVER

IP

Data
Gen

29/07/2020

AXI4
L

AXI4
L

• In Progress

• Insert Data Gen and NVEM Formatter Block into Beam test design
• Use to write our data stream and format into NVME drives via Beam IP
• Added ILAs to AXIS buses in and out of NVME Formatter block
• Design Compiles – debug in progress
• Needs test software to confirm operation

Summary

29/07/2020 Technology - ESDG - Rob Halsall 14

• Initial version of formatter Block - on STFC
Gitlab and CERN Gitlab
● https://gitlab.cern.ch/DUNE-SP-TDR-DAQ/nvme-block-formatting

• Timing closure at 250 MHz standalone

• Integration with Beam test design in progress

• Use our data gen and formatter as data
source

• Some minor bugs to resolve in
formatter/checker

• Add features such as CRC, monitoring, control
plane as we move forward and integrate
designs

• Needs integration with firmware build tool
(ipbb) and rest of project

KCU105

VCU118

NvmeStorage – Beam Ltd
Terry Barnaby of Beam Ltd

 Beam: Electronics and Software Engineering

 Instrumentation a focus

 Electronics design

 Software design

 Unit/product design

 Scientific systems

 Based in Yate, near Bristol in the UK

 https://portal.beam.ltd.uk/support/dune

NVMe Documentation

• Beam: https://portal.beam.ltd.uk/support/dune/

• Git repository (clone URL)
https://portal.beam.ltd.uk/git/DuneNvme.git

• General documentation is at:

• Doxygen documentation at:
https://portal.beam.ltd.uk/support/dune/files/doc/DuneNvme/fpga/html/

https://portal.beam.ltd.uk/support/dune/
https://portal.beam.ltd.uk/git/DuneNvme.git
https://portal.beam.ltd.uk/support/dune/files/doc/DuneNvme/fpga/html/
https://portal.beam.ltd.uk/support/dune/
https://portal.beam.ltd.uk/git/DuneNvme.git
https://portal.beam.ltd.uk/support/dune/files/doc/DuneNvme/fpga/html/

Dune DAQ – NVMe event storage

FPGA module to store 20 – 200 GBytes of event data
4 GBytes/s data rate for 100 seconds
512 Gbyte drives – so two 200 GByte events per drive

NvmeStorage - Introduction

80mm

NvmeStorage: Data structure
 The Dune DAQ system generates a “super” packet of

around 128 kBytes of data (variable due to
compression)

 The NvmeStorage system simply stores 4 kByte blocks
of data by block number (super block padded to 4k).

 The Dune DAQ provides around 1 second of buffering
to handle NVMe latencies (10% of buffer).

 Back-pressure from NVMe will result in packets being
dropped by buffer manager.

 Blocks have header/footer to handle lost blocks.

NvmeStorage: API

 AXI4 Data Stream 256 Bits
at 250 MHz.

 AXI4 Lite “bus” for register
access by host (may change
to IPBus)

 AXI4 data stream (128 bits)
for reading data and control
replies.

 Optional AXI4 control
stream providing host with
access to NVMe drives

NvmeStorage: Internals

NVMe

NVMe
PCIe
Host

NVMe
Control

And
Shared
Buffers

Data
Split

Data
Write

Stream

PCIe
Device

Interface

Host
Computer

NVMe

NVMe
PCIe
Root

NVMe
Control

And
Shared
Buffers

Test Modules

AXI4-Stream

AXI4-Lite Bus

Control
Split

AXI4-Stream
Read data AXI4-Stream

Write control

NvmeStorage: Test Rig

 Xilinx KCU105 board Ultrascale

 Kintex XCKU040-2FFVA1156E

 AB17-M2FMC dual NVMe board

 Basic PC

 Fedora 31 as OS

 Using Beam’s bfpga PCIe driver

 RAL, Bristol have duplicate test rigs

 Samsung 970, Seagate FireCuda NVMe under test

 Simple incrementing 32 bit value FPGA data source

NvmeStorage: NVMe’s

 Have limited endurance ~600 TBytes 512 GByte device

 Can trade off cost v.s. lifetime (large NVMe devices cost
more, but will last longer).

● 1 x 200 GByte chunk per day – 2 x 512G ~8 Years

● 1 x 200 GByte chunk per day – 2 x 1T ~16 Years

 Peak write latency is usually not defined in specs. ,
depends on many factors including NVMe engine and
firmware, device structure and age etc.

 We will test at least 3 types of devices, we will run one
set of drives to destruction storing metrics (about a week
at full data rate).

NvmeStorage: Status

 Firmware block complete.

 Waiting for verification by DUNE before final
invoice.

 Test firmware available for KCU105 (KU040)

 Ported to K800 in Bristol (KU115)

 Ported to VCU118 (VU9P)

 Needs testing.
 Will be ported to VMK180 (VM1802) in Oxford.

 Tests under way with different NVMe devices

NvmeStorage: Resource Usage (2 x NVMe)
 One PCIe x4 “hard IP” block per NVMe drive

 Small FPGA resource usage compared to any FELIX FPGA

● Fractions of KU115 (FPGA on FLX712)

● CLB LUB 10629 (1.5%)

● LUTRAM 1896 (0.6%)

● LUT FF 13776 (1%)

● BRAM 37 (2.3%)

 (See Erdem’s talk for usage of block formatter)

 Needs optimization

● Buffers everywhere….

● Compression BRAM usage seems much too high

Test Results – 200GByte with Seagate FireCuda

 Capture test loop: 200 Gbyte, wait
300s then trim“

◦ Mean Write Data Rate: 4749.30
MB/s
◦ Minimum: 4678.82 MB/s
◦ Median: 4772.84 MB/s
◦ Maximum: 4794.35 MB/s

◦ Mean Peak Latency: 2874922.71 us
◦ Median Peak Latency: 416566 us

25

 Simple capture test loop: 20 GByte
 13:24:45.723: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4820.820 MBytes/s, PeakLatancy: 4248240 us
 13:24:50.673: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4840.849 MBytes/s, PeakLatancy: 2989 us
 13:24:55.623: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.082 MBytes/s, PeakLatancy: 2990 us
 13:25:00.572: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4840.852 MBytes/s, PeakLatancy: 3003 us
 13:25:05.521: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4836.156 MBytes/s, PeakLatancy: 3004 us
 13:25:10.471: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4836.292 MBytes/s, PeakLatancy: 3004 us
 13:25:15.420: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4843.474 MBytes/s, PeakLatancy: 4228370 us
 13:25:20.370: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4835.163 MBytes/s, PeakLatancy: 3013 us
 13:25:25.319: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4835.042 MBytes/s, PeakLatancy: 3028 us
 13:25:30.269: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4838.537 MBytes/s, PeakLatancy: 3027 us
 13:25:35.218: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.713 MBytes/s, PeakLatancy: 3021 us
 13:25:40.167: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4833.900 MBytes/s, PeakLatancy: 3037 us
 13:25:45.117: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.244 MBytes/s, PeakLatancy: 3035 us
 13:25:50.066: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4836.052 MBytes/s, PeakLatancy: 6701 us

Test Results – Samsung 970 Pro
• PCIe 3 interface (c.f.

gen 4 on FireCuda)

• Lower peak
performance than
FireCuda

 ~4400 MBytes/s

• Much more “stable” –
only small variations
in transfer rate
observed.

• Need more testing to
ensure performance
doesn’t fall with age

 As blocks start
to fail and get
mapped out.

29/7/202026 Upstream DAQ Technology Review | David Cussans

A Note about NVMe Devices
• Have a controller (specialized CPU)

• RAM cache

• Often have an additional cache of fast flash in addition to...

• Main flash memory

• FireCuda devices

 Phison controller with PCIe 4

 RAM cache

 SLC NAND cache

 TLC NAND

• Samsung 970 Pro devices

 Controller with PCIe 3

 RAM cache

 MLC NAND

29/7/202027 Upstream DAQ Technology Review | David Cussans

Controller

RAM Cache

SLC Cache

TLC Main

Controller

RAM Cache

MLC Main

FireCuda 970 Pro

Need / Will deliver:

• Integration with Felix firmware

 Need AXI4S ↔ Full mode. Announced by Felix/Wupper team (or
use adaptation of Simone Ponzio’s CR Interface

• Need Wishbone/AIX4L interface. Either use IPBus over Wupper or
Felix/Wupper Wishbone interface

• Need API for event fragment request.

• Need API for super Nova trigger request

• Need Felix low level driver (“Felix Core”)

• Will provide interface to low-level IPBus register access

• Will provide software to keep track of SN data on disk and convert to
file on front end server.

• Will provide software to monitor NVMe status (interface to NVMe
status registers)

29/7/202028 Upstream DAQ Technology Review | David Cussans

Readout Modes

1) Trigger requests for windows of few [us] to few
seconds
• This is the main mode of operation. Handled by buffer manager (see previous talk).

 ROI in time by choosing event fragment start/end time

 ROI in channel number by unpacking on front-end server and selecting channels
 Does not require decompression, but does require unpacking of memory

structure read out from FPGA

• 2) Debug / calibration data streaming
• Debug streaming: keep existing firmware infrastructure in place to read out raw link data.

• Calibration data: Time of calibration events should be known → Can use a event
fragment request with special type.

• 3) SNB
• Stream ~ 100s of compressed data to NVMe on receipt of trigger. Read out slowly. (see

this talk)

29/7/202029 Upstream DAQ Technology Review | David Cussans

Known Failure Scenarios

1) Low level FE failure
• Data reception will perform check-sum / data integrity checks (see talk on hit finding)

 Corrupt data not passed to hit-finding pipelines.

 Corrupt data not passed to buffer manager

 ProtoDUNE-1 infrastructure remains - corrupt data can be read out for debugging if it
can be parsed by interface to “Central Router”.

 It may be worth adding capture buffers capable of capturing a few WIB frames of
data.

 Data integrity checks only partially implemented so far.

• 2) Link alignment error
• Currently data reception leaves gaps in data for missing WIB frames. Probably better to

discard an entire “super packet” (set of 64 WIB frames) to avoid risk of spurious hits.

• 3) Uncompressable data
• Will be able to turn off compression on a link-by-link basis (f/ware structure makes this

straight forward)

29/7/202030 Upstream DAQ Technology Review | David Cussans

Features
• Existing:

 Stand-alone buffer management

 Stand-alone block formatting

 Stand-alone NVMe writing.
 Meets requirements (4300 MBytes/s , c.f. ~ 3250 MBytes/s)

• Missing:

 Integration of buffer management
 To Felix/Wupper framework

 Event fragment requests
 SN triggers

 To block formatting + NVMe

 Integration of NVMe interface
 Start NVMe block for next burst needs to be written before SN trigger.
 Need software to read contents of two NVMe drives, check for data integrity, build one 400GByte file

from 2 x 200GBytes of NVMe blocks.
 After read, unused blocks (probably) need to be TRIMed to mark as free.

 Component selection
 Need NVMe drives suitable for writing 200GByte continuously

 Endurance testing
 Need to check that NVMe drives will delivery acceptable performance for lifetime of DUNE

29/7/202031 Upstream DAQ Technology Review | David Cussans

Adaptability

• Allows flexibility of approach as to where buffer placed (FPGA, server).

● (Existing “FELIX” infrastructure remains in place.)

• DUNE remains cost constrained →

 Moving functionality closer to front end give possibility of more APAs
per server and lower total hardware cost and power.

● Only “triggered” data has to move across PCIe. 70GBit/s per APA →
100 Mbit/s (for DUNE, ProtoDUNE more).

 PCIe board with NVMe connectors and RAM doesn’t have to populate
them if server cost drops more rapidly than expected and DUNE has
more funding than expected.

 i.e. can move to “server centric” if new requirements emerge and
funding permits.

 Adding connectors for NVMe, RAM small cost
 May be an issue having sufficient MGTs for both ATLAS use (48

input links) and two NVMe interfaces.

29/7/202032 Upstream DAQ Technology Review | David Cussans

Adaptability

• Can be scaled to 2 (or 1.5) APA per FPGA (dependant on hardware)

• Readout of PDS likely “straight to server”

 Could implement similar system as for TPC
 Perform hit finding on zero suppressed data
 But …… PDS lower bandwidth – single 4.8GBit/s link, cf. ten

9.6Gbit/s

29/7/202033 Upstream DAQ Technology Review | David Cussans

Adaptability

• The firmware can be ported to other boards (Xilinx FPGA devices) easily

• Works with different DDR4 RAM physical connection schemes (e.g. ZCU102
and KCU105 boards are different)

• Porting to other FPGA devices is possible (e.g Intel/Altera devices)

• Currently there are FPGA devices having Gigabytes of on-chip RAM (Xilinx
HBM technology)

• Can support uncompressed data (write/read access speed is adequate to
RAM. Add NVMe drive(s))

• Can support different readout modes (ROI based) either by adding extra
filtering in the output selector (no performance penalty) or repacking in
software

29/7/202034 Upstream DAQ Technology Review | David Cussans

Reliability

• Check data integrity at input to firmware
● Still to be implemented
● Drop data in controlled manner if downstream “stalls”

• Parts of the firmware can be turned on/off targeting faulty inputs
● Debugging buffers inside FPGA for data capture and diagnostics.

29/7/202035 Upstream DAQ Technology Review | David Cussans

Support and Maintenance

• Firmware relies on Felix framework

 Will be supported for ATLAS

 Bandwidth to host sufficiently low with buffer-on-FPGA approach that
other HEP-supported frameworks with lower bandwidth are possible.

 e.g. IPBus over PCIe , supported by CMS

• NVMe firmware is commercial but open source.

 Modifications/enhancements either in-house or purchasing support from
BEAM

• NVMe devices are multi-vendor and currently still improving in performance

 Need to select and evaluate correct device, but out of two devices
evaluated one exceeds requirements

 Multi-vendor preferable to single-vendor lock-in

• Have built a team that can develop and support firmware.

 Verify all features on PD2 then go to “maintenance mode”

29/7/202036 Upstream DAQ Technology Review | David Cussans

Resource Requirements
• Firmware relies on Felix framework

 Will be supported for ATLAS

 Bandwidth to host sufficiently low with buffer-on-FPGA approach that
other HEP-supported frameworks with lower bandwidth are possible.

 e.g. IPBus over PCIe

• NVMe firmware is commercial but open source.

 Modifications/enhancements either in-house or purchasing time from
BEAM

• NVMe devices are multi-vendor and currently still improving in performance

 Need to select and evaluate correct device, but out of two devices
evaluated one exceeds requirements

 Multi-vendor preferable to single-vendor lock-in

• Have built a team that can develop and support firmware.

29/7/202037 Upstream DAQ Technology Review | David Cussans

Summary
• Ability to keep data in FPGA drastically reduces bandwidth to upstream server

● Flexibility to reduce cost, power if needed.

• Prototypes exist for the components needed for 10s + 100s buffer system.

• NVMe storage a compelling choice for 100s buffer

● Required performance demonstrated with one (of two) models tested.

• Buffer management firmware (10s, 100s) needs to be integrated with FELIX
and Hit-finding blocks

● Can use evaluation boards for up to 1 APA

● e.g. XUP3R , Virtex Ultrascale VU9P. Port of “Vanilla Felix”. 12 input
links, Up to 512GByte RAM, waiting for release of expansion port →
NVMe cable.

• Needs software integration with DAQ

● Test at PD2

29/7/202038 Upstream DAQ Technology Review | David Cussans

Backup Slides

Example NVMe Test Script
test3(){
echo "Simple capture test loop: 200 GByte with delayed trim"
./test_nvme -d 2 -s 0 -n 52428800 trim
./test_nvme -nr -d 2 -s 52428800 -n 52428800 trim
Let NVMe's perform some trimming
sleep 20
while true; do
./test_nvme -nr -d 2 -s 0 -n 52428800 capture
sleep 10
./test_nvme -nr -d 2 -s 52428800 -n 52428800 capture
sleep 10
done
}

29/7/202040 Upstream DAQ Technology Review | David Cussans

Storage Costs
 Taken from https://thememoryguy.com/intels-optane-dimm-price-model/

(2019 data)

29/7/202041 Upstream DAQ Technology Review | David Cussans

Type Density Price $/GB

DRAM 32GB $374.71 $11.71

DRAM 64GB $708.25 $11.07

DRAM 128GB $1,913.21 $14.95

DRAM 256GB $5,952.00 $23.25

Optane (DIMM) 128GB $577.00 $4.51

Optane (DIMM) 256GB $2,125.00 $8.30

Optane (DIMM) 512GB $6,751.00 $13.19

NVMe (Samsung) 512GB $169.99 $0.33

NVMe (Samsung) 1TB $349.94 $0.35

https://thememoryguy.com/intels-optane-dimm-price-model/
https://thememoryguy.com/intels-optane-dimm-price-model/

KCU105 and dual NVME

29/07/2020 Technology - ESDG -
Rob Halsall

42

KCU105 and dual NVME at RAL

• ‘Duplicate’ of Beam test rig

• Dual Xeon Server

• KCU105 Dev Board

• Opsero Dual NVME Carrier
FMC

• 2 x Firecuda 500GB shown

• 2 x Samsung 970 Pro
512GB available

• See Adams slides for
results …

29/07/2020 Technology - ESDG -
Rob Halsall

43

**VCU118 below KCU105 …

NvmeStorage: Specifications
 Sustained data rate of 4 GBytes/s
 Able to store 2 x 200 GByte data chunks
 Able to handle NVMe latency issues
 Raw FPGA data stream input
 Low FPGA resource usage (No CPU cores etc.)
 Host CPU manages the system.
 Host CPU can read the data whilst writes are in

progress.
 Target Xilinx Ultrascale[+] and Vesal.
 Open source. (Apache Licence)

NvmeStorage: Structure
 PCIe Gen3 stable, Gen4 port in progress.
 4 lane PCIe Gen3 has a peak data rate of

around 4 GB/s
 Current commodity NVMe’s have a write data

rate of ~2.4 GB/s
 Design uses two NVMe’s working in parallel.

Blocks written to alternate drives.
 Uses two Xilinx PCIe hard blocks
 Implemented in FPGA state machines
 Hard coded NVMe parameters for simplicity

(Block size, Doorbell stride and size)

Test Results – Small Chunks NVIDIA FireCuda

 Test 1 - "Simple capture test loop:
20 GByte“

◦ N = 39
◦ Mean Write Data Rate: 4804.15

MB/s
◦ Minimum: 3171.61 MB/s
◦ Median: 4836.78 MB/s
◦ Maximum: 4931.12 MB/s

◦ Mean Peak Latency: 456188 us
◦ Median Peak Latency: 3020 us

◦ Difference from mean to median
shows instability

◦ Instability in FireCuda drives also
found in testing by BEAM

46

 Simple capture test loop: 20 GByte
 13:24:45.723: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4820.820 MBytes/s,

PeakLatancy: 4248240 us
 13:24:50.673: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4840.849 MBytes/s,

PeakLatancy: 2989 us
 13:24:55.623: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.082 MBytes/s,

PeakLatancy: 2990 us
 13:25:00.572: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4840.852 MBytes/s,

PeakLatancy: 3003 us
 13:25:05.521: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4836.156 MBytes/s,

PeakLatancy: 3004 us
 13:25:10.471: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4836.292 MBytes/s,

PeakLatancy: 3004 us
 13:25:15.420: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4843.474 MBytes/s,

PeakLatancy: 4228370 us
 13:25:20.370: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4835.163 MBytes/s,

PeakLatancy: 3013 us
 13:25:25.319: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4835.042 MBytes/s,

PeakLatancy: 3028 us
 13:25:30.269: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4838.537 MBytes/s,

PeakLatancy: 3027 us
 13:25:35.218: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.713 MBytes/s,

PeakLatancy: 3021 us
 13:25:40.167: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4833.900 MBytes/s,

PeakLatancy: 3037 us
 13:25:45.117: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.244 MBytes/s,

PeakLatancy: 3035 us
 13:25:50.066: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4836.052 MBytes/s,

PeakLatancy: 6701 us

Upstream DAQ Technology Review

● 100s Buffer – Firmware

● Criteria based assessment.

David Cussans

29/07/2020

Outline

• Introduction to 100s buffer

• Stream Formatter

 Split ~ 320 GByte packet from buffer manager into 4kByte packets for storage

• NVMe Storage

 Compressed data written to two drives in 100 sec.

• Integration with DUNE DAQ

• Readout Operation Modes

• Response to “Known Failure” scenarios

• Criteria Based Assessment

 Features

 Adaptability

 Reliability

 Maintenance

 Resource

29/7/20202 Upstream DAQ Technology Review | David Cussans

2

Bandwidth Requirements (TPC)

• 2590 ADC channels per APA

• 2 Msample/s, 12-bit

• → 60Gbit/s raw data

• ~ 10% overhead for headers etc.

• Factor ~ 2.6 compression (on limited ProtoDUNE study)

• → 3250 MBytes/s data rate to buffer

29/7/20203 Upstream DAQ Technology Review | David Cussans

3

Message/Data flow for 100s buffer

29/7/20204 Upstream DAQ Technology Review | David Cussans

4

Firmware Part

29/7/20205 Upstream DAQ Technology Review | David Cussans

5

Software Part

• At initialization:

 Set up size of Super Nova capture

 Write to IPBus register over Wupper interface (using Felix routines)

 Set start location of Super Nova data in NVMe

 Write to IPBus register over Wupper

• During run, on receipt of SN trigger:

 Write to IPBus register over Wupper to initiate Super Nova capture

 Monitor progress of capture

 When complete, update start location of SN data in NVMe, ready for next
trigger

 Read SN data from NVMe drives

 Write to IPBus register, receive AXI4 packet converted to full-mode packet.

 Combine data from two NVMe drives, strip headers, check CRCs, transmit to
back-end DAQ.

29/7/20206 Upstream DAQ Technology Review | David Cussans

6

DUNE Block Formatting
Firmware

29/07/2020 Technology - ESDG -
Rob Halsall

7

Technology - ESDG - Rob Halsall

NVME Format Block

NVME
FORMAT
BLOCK

AXIS 256
@250MHz

AXIS 256
@250MHz NVME

DRIVE
R
IP

DRAM
BUFFE

R
IP

29/07/2020

AXI4
L

AXI4
L

Technology - ESDG - Rob Halsall

NVME Format Block Internal
1

:1
 F

IF
O

AXI4S
256

AXI4S
256

S
P
LI

T
T
E

R

AXI4S
256

H
E

A
D

E
R

 I
N

S
E

R
T
E
R

AXI4S
256

C
R

C
3

2
 I
N

S
E
R
T
E
R

AXI4S
256

1
:1

 F
IF

O

AXI4S
256

PA
D

D
E
R

AXI4S
256

AXI4L

R
E

G
IS

T
E
R

S

STATS
MODULE

29/07/2020

250 MHz250 MHz

IPBus
• Reset/Control/Error Recovery not

shown
• Padder pads to 4k boundary.
• Splitter cuts into 4k block
• CRC32 will move inside Header

Inserter block

Technology - ESDG - Rob Halsall

NVME Format Block Internal -
implemented

1
:1

 F
IF

O

AXI4S
256

AXI4S
256

S
P
LI

T
T
E

R

AXI4S
256

H
E

A
D

E
R

 I
N

S
E

R
T
E
R

AXI4S
256

C
R

C
3

2
 I
N

S
E
R
T
E
R

AXI4S
256

1
:1

 F
IF

O

AXI4S
256

PA
D

D
E
R

AXI4S
256

AXI4L

R
E

G
IS

T
E
R

S

STATS
MODULE

29/07/2020

250 MHz250 MHz

IPBus
• Control Path, Stats & CRC not

implemented yet
• Enough blocks written to test the design
• Physical top layer test bench for timing

closure tests – meets 250MHz
• Integration of format block with NVMe

firmware underway

Technology - ESDG - Rob Halsall

NVME Super Packet to Sub Packet

Super Packet
1

• Super Packet (Large) is broken into multiple sub packets which are 4K Bytes and are labelled with
a Header (32B) containing super packet no, sub packet number, CRC32, payload cycles and flags.

• The super packet number is constant for all its sub packets and the sub packet number
increments fro 0 to N where is the number of sub packets -1 contained within the super packet.

• The last packet may have padding (zeros) added and payload cycles will be lower in size in the
header of the last packet to reflect this

Super Packet
2

Super Packet
0

4064 Bytes 4064 Bytes 4064 Bytes 4064 BytesH H H H

Sub Packet 0

Pad
Zero

s

Sub Packet 1 Sub Packet 2 Sub Packet N

29/07/2020

Technology - ESDG - Rob Halsall

NVME Sub Packet Format

8 BYTE - SUPER PACKET COUNT 8 BYTE - SUB PACKET COUNT
8 BYTE - FLAGS & PAYLOAD

CYCLES
8 BYTE - ETHERNET CRC32

4064 Bytes

HEADER

PAYLOAD

• HEADER shown is a proposal of a general form – field, sizes and flags
• Header now inserted as a single clock cycle 256 bit wide word for simplicity of design – doubled in size

over previous slides
• Packet is 4096 Bytes with 32 byte header and 4064 byte payload
• Some flexibility in field sizes and header contents
• Uniquely identify packets & detect errors

29/07/2020

NVME + Formatter Block Test Bench

NVME
FORMAT
BLOCK

AXIS 256
@250MHz

AXIS 256
@250MHz

NVME
DRIVER

IP

Data
Gen

29/07/2020

AXI4
L

AXI4
L

• In Progress

• Insert Data Gen and NVEM Formatter Block into Beam test design
• Use to write our data stream and format into NVME drives via Beam IP
• Added ILAs to AXIS buses in and out of NVME Formatter block
• Design Compiles – debug in progress
• Needs test software to confirm operation

Summary

29/07/2020 Technology - ESDG - Rob Halsall 14

• Initial version of formatter Block - on STFC
Gitlab and CERN Gitlab
● https://gitlab.cern.ch/DUNE-SP-TDR-DAQ/nvme-block-formatting

• Timing closure at 250 MHz standalone
• Integration with Beam test design in progress

• Use our data gen and formatter as data
source

• Some minor bugs to resolve in
formatter/checker

• Add features such as CRC, monitoring, control
plane as we move forward and integrate
designs

• Needs integration with firmware build tool
(ipbb) and rest of project

KCU105

VCU118

NvmeStorage – Beam Ltd
Terry Barnaby of Beam Ltd

 Beam: Electronics and Software Engineering

 Instrumentation a focus

 Electronics design

 Software design

 Unit/product design

 Scientific systems

 Based in Yate, near Bristol in the UK

 https://portal.beam.ltd.uk/support/dune

NVMe Documentation

• Beam: https://portal.beam.ltd.uk/support/dune/

• Git repository (clone URL)
https://portal.beam.ltd.uk/git/DuneNvme.git

• General documentation is at:

• Doxygen documentation at:
https://portal.beam.ltd.uk/support/dune/files/doc/DuneNvme/fpga/html/

Dune DAQ – NVMe event storage

FPGA module to store 20 – 200 GBytes of event data
4 GBytes/s data rate for 100 seconds
512 Gbyte drives – so two 200 GByte events per drive

NvmeStorage - Introduction

80mm

NvmeStorage: Data structure
 The Dune DAQ system generates a “super” packet of

around 128 kBytes of data (variable due to
compression)

 The NvmeStorage system simply stores 4 kByte blocks
of data by block number (super block padded to 4k).

 The Dune DAQ provides around 1 second of buffering
to handle NVMe latencies (10% of buffer).

 Back-pressure from NVMe will result in packets being
dropped by buffer manager.

 Blocks have header/footer to handle lost blocks.

NvmeStorage: API

 AXI4 Data Stream 256 Bits
at 250 MHz.

 AXI4 Lite “bus” for register
access by host (may change
to IPBus)

 AXI4 data stream (128 bits)
for reading data and control
replies.

 Optional AXI4 control
stream providing host with
access to NVMe drives

NvmeStorage: Internals

NVMe

NVMe
PCIe
Host

NVMe
Control

And
Shared
Buffers

Data
Split

Data
Write

Stream

PCIe
Device

Interface

Host
Computer

NVMe

NVMe
PCIe
Root

NVMe
Control

And
Shared
Buffers

Test Modules

AXI4-Stream

AXI4-Lite Bus

Control
Split

AXI4-Stream
Read data AXI4-Stream

Write control

NvmeStorage: Test Rig

 Xilinx KCU105 board Ultrascale

 Kintex XCKU040-2FFVA1156E

 AB17-M2FMC dual NVMe board

 Basic PC

 Fedora 31 as OS

 Using Beam’s bfpga PCIe driver

 RAL, Bristol have duplicate test rigs

 Samsung 970, Seagate FireCuda NVMe under test

 Simple incrementing 32 bit value FPGA data source

NvmeStorage: NVMe’s

 Have limited endurance ~600 TBytes 512 GByte device

 Can trade off cost v.s. lifetime (large NVMe devices cost
more, but will last longer).

● 1 x 200 GByte chunk per day – 2 x 512G ~8 Years

● 1 x 200 GByte chunk per day – 2 x 1T ~16 Years

 Peak write latency is usually not defined in specs. ,
depends on many factors including NVMe engine and
firmware, device structure and age etc.

 We will test at least 3 types of devices, we will run one
set of drives to destruction storing metrics (about a week
at full data rate).

NvmeStorage: Status

 Firmware block complete.

 Waiting for verification by DUNE before final
invoice.

 Test firmware available for KCU105 (KU040)

 Ported to K800 in Bristol (KU115)

 Ported to VCU118 (VU9P)

 Needs testing.
 Will be ported to VMK180 (VM1802) in Oxford.

 Tests under way with different NVMe devices

NvmeStorage: Resource Usage (2 x NVMe)
 One PCIe x4 “hard IP” block per NVMe drive

 Small FPGA resource usage compared to any FELIX FPGA

● Fractions of KU115 (FPGA on FLX712)

● CLB LUB 10629 (1.5%)

● LUTRAM 1896 (0.6%)

● LUT FF 13776 (1%)

● BRAM 37 (2.3%)

 (See Erdem’s talk for usage of block formatter)

 Needs optimization

● Buffers everywhere….

● Compression BRAM usage seems much too high

Test Results – 200GByte with Seagate FireCuda
 Capture test loop: 200 Gbyte, wait
300s then trim“

◦ Mean Write Data Rate: 4749.30
MB/s
◦ Minimum: 4678.82 MB/s
◦ Median: 4772.84 MB/s
◦ Maximum: 4794.35 MB/s

◦ Mean Peak Latency: 2874922.71 us
◦ Median Peak Latency: 416566 us

25

 Simple capture test loop: 20 GByte
 13:24:45.723: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4820.820 MBytes/s, PeakLatancy: 4248240 us
 13:24:50.673: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4840.849 MBytes/s, PeakLatancy: 2989 us
 13:24:55.623: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.082 MBytes/s, PeakLatancy: 2990 us
 13:25:00.572: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4840.852 MBytes/s, PeakLatancy: 3003 us
 13:25:05.521: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4836.156 MBytes/s, PeakLatancy: 3004 us
 13:25:10.471: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4836.292 MBytes/s, PeakLatancy: 3004 us
 13:25:15.420: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4843.474 MBytes/s, PeakLatancy: 4228370 us
 13:25:20.370: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4835.163 MBytes/s, PeakLatancy: 3013 us
 13:25:25.319: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4835.042 MBytes/s, PeakLatancy: 3028 us
 13:25:30.269: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4838.537 MBytes/s, PeakLatancy: 3027 us
 13:25:35.218: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.713 MBytes/s, PeakLatancy: 3021 us
 13:25:40.167: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4833.900 MBytes/s, PeakLatancy: 3037 us
 13:25:45.117: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.244 MBytes/s, PeakLatancy: 3035 us
 13:25:50.066: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4836.052 MBytes/s, PeakLatancy: 6701 us

Test Results – Samsung 970 Pro
• PCIe 3 interface (c.f.

gen 4 on FireCuda)

• Lower peak
performance than
FireCuda

 ~4400 MBytes/s

• Much more “stable” –
only small variations
in transfer rate
observed.

• Need more testing to
ensure performance
doesn’t fall with age

 As blocks start
to fail and get
mapped out.

29/7/202026 Upstream DAQ Technology Review | David Cussans

26

A Note about NVMe Devices
• Have a controller (specialized CPU)

• RAM cache

• Often have an additional cache of fast flash in addition to...

• Main flash memory

• FireCuda devices

 Phison controller with PCIe 4

 RAM cache

 SLC NAND cache

 TLC NAND

• Samsung 970 Pro devices

 Controller with PCIe 3

 RAM cache

 MLC NAND

29/7/202027 Upstream DAQ Technology Review | David Cussans

Controller

RAM Cache

SLC Cache

TLC Main

Controller

RAM Cache

MLC Main

FireCuda 970 Pro

27

Need / Will deliver:

• Integration with Felix firmware

 Need AXI4S ↔ Full mode. Announced by Felix/Wupper team (or
use adaptation of Simone Ponzio’s CR Interface

• Need Wishbone/AIX4L interface. Either use IPBus over Wupper or
Felix/Wupper Wishbone interface

• Need API for event fragment request.

• Need API for super Nova trigger request

• Need Felix low level driver (“Felix Core”)

• Will provide interface to low-level IPBus register access

• Will provide software to keep track of SN data on disk and convert to
file on front end server.

• Will provide software to monitor NVMe status (interface to NVMe
status registers)

29/7/202028 Upstream DAQ Technology Review | David Cussans

28

Readout Modes

1) Trigger requests for windows of few [us] to few
seconds
• This is the main mode of operation. Handled by buffer manager (see previous talk).

 ROI in time by choosing event fragment start/end time

 ROI in channel number by unpacking on front-end server and selecting channels
 Does not require decompression, but does require unpacking of memory

structure read out from FPGA

• 2) Debug / calibration data streaming
• Debug streaming: keep existing firmware infrastructure in place to read out raw link data.

• Calibration data: Time of calibration events should be known → Can use a event
fragment request with special type.

• 3) SNB
• Stream ~ 100s of compressed data to NVMe on receipt of trigger. Read out slowly. (see

this talk)

29/7/202029 Upstream DAQ Technology Review | David Cussans

29

Known Failure Scenarios

1) Low level FE failure
• Data reception will perform check-sum / data integrity checks (see talk on hit finding)

 Corrupt data not passed to hit-finding pipelines.

 Corrupt data not passed to buffer manager

 ProtoDUNE-1 infrastructure remains - corrupt data can be read out for debugging if it
can be parsed by interface to “Central Router”.

 It may be worth adding capture buffers capable of capturing a few WIB frames of
data.

 Data integrity checks only partially implemented so far.

• 2) Link alignment error
• Currently data reception leaves gaps in data for missing WIB frames. Probably better to

discard an entire “super packet” (set of 64 WIB frames) to avoid risk of spurious hits.

• 3) Uncompressable data
• Will be able to turn off compression on a link-by-link basis (f/ware structure makes this

straight forward)

29/7/202030 Upstream DAQ Technology Review | David Cussans

30

Features
• Existing:

 Stand-alone buffer management

 Stand-alone block formatting

 Stand-alone NVMe writing.
 Meets requirements (4300 MBytes/s , c.f. ~ 3250 MBytes/s)

• Missing:

 Integration of buffer management
 To Felix/Wupper framework

 Event fragment requests
 SN triggers

 To block formatting + NVMe

 Integration of NVMe interface
 Start NVMe block for next burst needs to be written before SN trigger.
 Need software to read contents of two NVMe drives, check for data integrity, build one 400GByte file

from 2 x 200GBytes of NVMe blocks.
 After read, unused blocks (probably) need to be TRIMed to mark as free.

 Component selection
 Need NVMe drives suitable for writing 200GByte continuously

 Endurance testing
 Need to check that NVMe drives will delivery acceptable performance for lifetime of DUNE

29/7/202031 Upstream DAQ Technology Review | David Cussans

31

Adaptability

• Allows flexibility of approach as to where buffer placed (FPGA, server).

● (Existing “FELIX” infrastructure remains in place.)

• DUNE remains cost constrained →

 Moving functionality closer to front end give possibility of more APAs
per server and lower total hardware cost and power.

● Only “triggered” data has to move across PCIe. 70GBit/s per APA →
100 Mbit/s (for DUNE, ProtoDUNE more).

 PCIe board with NVMe connectors and RAM doesn’t have to populate
them if server cost drops more rapidly than expected and DUNE has
more funding than expected.

 i.e. can move to “server centric” if new requirements emerge and
funding permits.

 Adding connectors for NVMe, RAM small cost
 May be an issue having sufficient MGTs for both ATLAS use (48

input links) and two NVMe interfaces.

29/7/202032 Upstream DAQ Technology Review | David Cussans

32

Adaptability

• Can be scaled to 2 (or 1.5) APA per FPGA (dependant on hardware)

• Readout of PDS likely “straight to server”

 Could implement similar system as for TPC
 Perform hit finding on zero suppressed data
 But …… PDS lower bandwidth – single 4.8GBit/s link, cf. ten

9.6Gbit/s

29/7/202033 Upstream DAQ Technology Review | David Cussans

33

Adaptability

• The firmware can be ported to other boards (Xilinx FPGA devices) easily

• Works with different DDR4 RAM physical connection schemes (e.g. ZCU102
and KCU105 boards are different)

• Porting to other FPGA devices is possible (e.g Intel/Altera devices)

• Currently there are FPGA devices having Gigabytes of on-chip RAM (Xilinx
HBM technology)

• Can support uncompressed data (write/read access speed is adequate to
RAM. Add NVMe drive(s))

• Can support different readout modes (ROI based) either by adding extra
filtering in the output selector (no performance penalty) or repacking in
software

29/7/202034 Upstream DAQ Technology Review | David Cussans

34

Reliability

• Check data integrity at input to firmware
● Still to be implemented
● Drop data in controlled manner if downstream “stalls”

• Parts of the firmware can be turned on/off targeting faulty inputs
● Debugging buffers inside FPGA for data capture and diagnostics.

29/7/202035 Upstream DAQ Technology Review | David Cussans

35

Support and Maintenance

• Firmware relies on Felix framework

 Will be supported for ATLAS

 Bandwidth to host sufficiently low with buffer-on-FPGA approach that
other HEP-supported frameworks with lower bandwidth are possible.

 e.g. IPBus over PCIe , supported by CMS

• NVMe firmware is commercial but open source.

 Modifications/enhancements either in-house or purchasing support from
BEAM

• NVMe devices are multi-vendor and currently still improving in performance

 Need to select and evaluate correct device, but out of two devices
evaluated one exceeds requirements

 Multi-vendor preferable to single-vendor lock-in

• Have built a team that can develop and support firmware.

 Verify all features on PD2 then go to “maintenance mode”

29/7/202036 Upstream DAQ Technology Review | David Cussans

36

Resource Requirements
• Firmware relies on Felix framework

 Will be supported for ATLAS

 Bandwidth to host sufficiently low with buffer-on-FPGA approach that
other HEP-supported frameworks with lower bandwidth are possible.

 e.g. IPBus over PCIe

• NVMe firmware is commercial but open source.

 Modifications/enhancements either in-house or purchasing time from
BEAM

• NVMe devices are multi-vendor and currently still improving in performance

 Need to select and evaluate correct device, but out of two devices
evaluated one exceeds requirements

 Multi-vendor preferable to single-vendor lock-in

• Have built a team that can develop and support firmware.

29/7/202037 Upstream DAQ Technology Review | David Cussans

37

Summary
• Ability to keep data in FPGA drastically reduces bandwidth to upstream server

● Flexibility to reduce cost, power if needed.

• Prototypes exist for the components needed for 10s + 100s buffer system.

• NVMe storage a compelling choice for 100s buffer

● Required performance demonstrated with one (of two) models tested.

• Buffer management firmware (10s, 100s) needs to be integrated with FELIX
and Hit-finding blocks

● Can use evaluation boards for up to 1 APA

● e.g. XUP3R , Virtex Ultrascale VU9P. Port of “Vanilla Felix”. 12 input
links, Up to 512GByte RAM, waiting for release of expansion port →
NVMe cable.

• Needs software integration with DAQ

● Test at PD2

29/7/202038 Upstream DAQ Technology Review | David Cussans

38

Backup Slides

Example NVMe Test Script
test3(){
echo "Simple capture test loop: 200 GByte with delayed trim"
./test_nvme -d 2 -s 0 -n 52428800 trim
./test_nvme -nr -d 2 -s 52428800 -n 52428800 trim
Let NVMe's perform some trimming
sleep 20
while true; do
./test_nvme -nr -d 2 -s 0 -n 52428800 capture
sleep 10
./test_nvme -nr -d 2 -s 52428800 -n 52428800 capture
sleep 10
done
}

29/7/202040 Upstream DAQ Technology Review | David Cussans

40

Storage Costs
 Taken from https://thememoryguy.com/intels-optane-dimm-price-model/

(2019 data)

29/7/202041 Upstream DAQ Technology Review | David Cussans

Type Density Price $/GB

DRAM 32GB $374.71 $11.71

DRAM 64GB $708.25 $11.07

DRAM 128GB $1,913.21 $14.95

DRAM 256GB $5,952.00 $23.25

Optane (DIMM) 128GB $577.00 $4.51

Optane (DIMM) 256GB $2,125.00 $8.30

Optane (DIMM) 512GB $6,751.00 $13.19

NVMe (Samsung) 512GB $169.99 $0.33

NVMe (Samsung) 1TB $349.94 $0.35

41

KCU105 and dual NVME

29/07/2020 Technology - ESDG -
Rob Halsall

42

KCU105 and dual NVME at RAL

• ‘Duplicate’ of Beam test rig

• Dual Xeon Server

• KCU105 Dev Board

• Opsero Dual NVME Carrier
FMC

• 2 x Firecuda 500GB shown

• 2 x Samsung 970 Pro
512GB available

• See Adams slides for
results …

29/07/2020 Technology - ESDG -
Rob Halsall

43

**VCU118 below KCU105 …

NvmeStorage: Specifications
 Sustained data rate of 4 GBytes/s
 Able to store 2 x 200 GByte data chunks
 Able to handle NVMe latency issues
 Raw FPGA data stream input
 Low FPGA resource usage (No CPU cores etc.)
 Host CPU manages the system.
 Host CPU can read the data whilst writes are in

progress.
 Target Xilinx Ultrascale[+] and Vesal.
 Open source. (Apache Licence)

NvmeStorage: Structure
 PCIe Gen3 stable, Gen4 port in progress.
 4 lane PCIe Gen3 has a peak data rate of

around 4 GB/s
 Current commodity NVMe’s have a write data

rate of ~2.4 GB/s
 Design uses two NVMe’s working in parallel.

Blocks written to alternate drives.
 Uses two Xilinx PCIe hard blocks
 Implemented in FPGA state machines
 Hard coded NVMe parameters for simplicity

(Block size, Doorbell stride and size)

Test Results – Small Chunks NVIDIA FireCuda

 Test 1 - "Simple capture test loop:
20 GByte“

◦ N = 39
◦ Mean Write Data Rate: 4804.15

MB/s
◦ Minimum: 3171.61 MB/s
◦ Median: 4836.78 MB/s
◦ Maximum: 4931.12 MB/s

◦ Mean Peak Latency: 456188 us
◦ Median Peak Latency: 3020 us

◦ Difference from mean to median
shows instability

◦ Instability in FireCuda drives also
found in testing by BEAM

46

 Simple capture test loop: 20 GByte
 13:24:45.723: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4820.820 MBytes/s,

PeakLatancy: 4248240 us
 13:24:50.673: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4840.849 MBytes/s,

PeakLatancy: 2989 us
 13:24:55.623: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.082 MBytes/s,

PeakLatancy: 2990 us
 13:25:00.572: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4840.852 MBytes/s,

PeakLatancy: 3003 us
 13:25:05.521: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4836.156 MBytes/s,

PeakLatancy: 3004 us
 13:25:10.471: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4836.292 MBytes/s,

PeakLatancy: 3004 us
 13:25:15.420: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4843.474 MBytes/s,

PeakLatancy: 4228370 us
 13:25:20.370: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4835.163 MBytes/s,

PeakLatancy: 3013 us
 13:25:25.319: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4835.042 MBytes/s,

PeakLatancy: 3028 us
 13:25:30.269: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4838.537 MBytes/s,

PeakLatancy: 3027 us
 13:25:35.218: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.713 MBytes/s,

PeakLatancy: 3021 us
 13:25:40.167: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4833.900 MBytes/s,

PeakLatancy: 3037 us
 13:25:45.117: ErrorStatus: 0x0, StartBlock: 0, DataRate: 4834.244 MBytes/s,

PeakLatancy: 3035 us
 13:25:50.066: ErrorStatus: 0x0, StartBlock: 5242880, DataRate: 4836.052 MBytes/s,

PeakLatancy: 6701 us

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

