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Outline

• Introduction to 100s buffer

• Stream Formatter

 Split ~ 320 GByte packet from buffer manager into 4kByte packets for storage

• NVMe Storage

 Compressed data written to two drives in 100 sec.

• Integration with DUNE DAQ

• Readout Operation Modes

• Response to “Known Failure” scenarios

• Criteria Based Assessment

 Features

 Adaptability

 Reliability

 Maintenance

 Resource
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Bandwidth Requirements (TPC)

• 2590 ADC channels per APA

• 2 Msample/s, 12-bit

• → 60Gbit/s raw data

• ~ 10% overhead for headers etc.

• Factor ~ 2.6 compression (on limited ProtoDUNE study)

• → 3250 MBytes/s data rate to buffer 
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Message/Data flow for 100s buffer 
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Firmware Part
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Software Part

• At initialization:

 Set up size of Super Nova capture

 Write to IPBus register over Wupper interface (using Felix routines)

 Set start location of Super Nova data in NVMe

 Write to IPBus register over Wupper

• During run, on receipt of SN trigger: 

 Write to IPBus register over Wupper to initiate Super Nova capture

 Monitor progress of capture

 When complete, update start location of SN data in NVMe, ready for next 
trigger

 Read SN data from NVMe drives

 Write to IPBus register, receive AXI4 packet converted to full-mode packet.

 Combine data from two NVMe drives, strip headers, check CRCs, transmit to 
back-end DAQ.
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DUNE Block Formatting 
Firmware
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Rob Halsall
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NVME Format Block
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NVME Format Block Internal
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250 MHz250 MHz

IPBus
• Reset/Control/Error Recovery not 

shown
• Padder pads to 4k boundary.
• Splitter cuts into 4k block
• CRC32 will move inside Header 

Inserter block
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NVME Format Block Internal - 
implemented
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250 MHz250 MHz

IPBus
• Control Path, Stats & CRC not 

implemented yet
• Enough blocks written to test the design
• Physical top layer test bench for timing 

closure tests – meets 250MHz
• Integration of format block with NVMe 

firmware underway
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NVME Super Packet to Sub Packet 

Super Packet 
1 

• Super Packet (Large) is broken into multiple sub packets which are 4K Bytes and are labelled with 
a Header (32B) containing super packet no, sub packet number, CRC32, payload cycles and flags.

• The super packet number is constant for all its sub packets and the sub packet number 
increments fro 0 to N where is the number of sub packets -1 contained within the super packet.

• The last packet may have padding (zeros) added and payload cycles will be lower in size in the 
header of the last packet to reflect this

Super Packet 
2 

Super Packet 
0 

4064 Bytes 4064 Bytes 4064 Bytes 4064 BytesH H H H

Sub Packet 0

Pad
Zero

s

Sub Packet 1 Sub Packet 2 Sub Packet N
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NVME Sub Packet Format

8 BYTE - SUPER PACKET COUNT 8 BYTE - SUB PACKET COUNT
8 BYTE - FLAGS & PAYLOAD 

CYCLES
8 BYTE - ETHERNET CRC32

4064 Bytes

HEADER

PAYLOAD

• HEADER shown is a proposal of a general form – field, sizes and flags
• Header now inserted as a single clock cycle 256 bit wide word for simplicity of design – doubled in size 

over previous slides
• Packet is 4096 Bytes with 32 byte header and 4064 byte payload
• Some flexibility in field sizes and header contents
• Uniquely identify packets & detect errors
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NVME + Formatter Block Test Bench
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• In Progress

• Insert Data Gen and NVEM Formatter Block into Beam test design
• Use to write our data stream and format into NVME drives via Beam IP
• Added ILAs to AXIS buses in and out of NVME Formatter block
• Design Compiles – debug in progress
• Needs test software to confirm operation



Summary
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• Initial version of formatter Block - on STFC 
Gitlab and CERN Gitlab
● https://gitlab.cern.ch/DUNE-SP-TDR-DAQ/nvme-block-formatting 

• Timing closure at 250 MHz standalone

• Integration with Beam test design in progress

• Use our data gen and formatter as data 
source

• Some minor bugs to resolve in 
formatter/checker

• Add features such as CRC, monitoring, control 
plane as we move forward and integrate 
designs

• Needs integration with firmware build tool 
(ipbb) and rest of project

KCU105

VCU118



NvmeStorage – Beam Ltd
Terry Barnaby of Beam Ltd

 Beam: Electronics and Software Engineering

 Instrumentation a focus

 Electronics design

 Software design

 Unit/product design

 Scientific systems

 Based in Yate, near Bristol in the UK

 https://portal.beam.ltd.uk/support/dune



NVMe Documentation 

• Beam: https://portal.beam.ltd.uk/support/dune/

• Git repository (clone URL) 
https://portal.beam.ltd.uk/git/DuneNvme.git

• General documentation is at: 

• Doxygen documentation at: 
https://portal.beam.ltd.uk/support/dune/files/doc/DuneNvme/fpga/html/

https://portal.beam.ltd.uk/support/dune/
https://portal.beam.ltd.uk/git/DuneNvme.git
https://portal.beam.ltd.uk/support/dune/files/doc/DuneNvme/fpga/html/
https://portal.beam.ltd.uk/support/dune/
https://portal.beam.ltd.uk/git/DuneNvme.git
https://portal.beam.ltd.uk/support/dune/files/doc/DuneNvme/fpga/html/


Dune DAQ – NVMe event storage

FPGA module to store 20 – 200 GBytes of event data
4 GBytes/s data rate for 100 seconds
512 Gbyte drives – so two 200 GByte events per drive

NvmeStorage - Introduction

80mm



NvmeStorage: Data structure
 The Dune DAQ system generates a “super” packet of 

around 128 kBytes of data (variable due to 
compression)

 The NvmeStorage system simply stores 4 kByte blocks 
of data by block number (super block padded to 4k).

 The Dune DAQ provides around 1 second of buffering 
to handle NVMe latencies (10% of buffer).

 Back-pressure from NVMe will result in packets being 
dropped by buffer manager.

 Blocks have header/footer to handle lost blocks.



NvmeStorage: API

 AXI4 Data Stream 256 Bits 
at 250 MHz.

 AXI4 Lite “bus” for register 
access by host (may change 
to IPBus)

 AXI4 data stream (128 bits) 
for reading data and control 
replies.

 Optional AXI4 control 
stream providing host with 
access to NVMe drives



NvmeStorage: Internals
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NvmeStorage: Test Rig

 Xilinx KCU105 board Ultrascale

 Kintex XCKU040-2FFVA1156E 

 AB17-M2FMC dual NVMe board

 Basic PC

 Fedora 31 as OS

 Using Beam’s bfpga PCIe driver

 RAL, Bristol have duplicate test rigs

 Samsung 970, Seagate FireCuda NVMe under test

 Simple incrementing 32 bit value FPGA data source



NvmeStorage: NVMe’s

 Have limited endurance ~600 TBytes 512 GByte device

 Can trade off cost v.s. lifetime ( large NVMe devices cost 
more, but will last longer).

● 1 x 200 GByte chunk per day – 2 x 512G ~8 Years

● 1 x 200 GByte chunk per day – 2 x 1T ~16 Years

 Peak write latency is usually not defined in specs. , 
depends on many factors including NVMe engine and 
firmware, device structure and age etc.

 We will test at least 3 types of devices, we will run one 
set of drives to destruction storing metrics (about a week 
at full data rate).



NvmeStorage: Status

 Firmware block complete.

 Waiting for verification by DUNE before final 
invoice.

 Test firmware available for KCU105 (KU040)

 Ported to K800 in Bristol (KU115)

 Ported to VCU118 (VU9P)

 Needs testing.
 Will be ported to VMK180 (VM1802) in Oxford.

 Tests under way with different NVMe devices



NvmeStorage: Resource Usage (2 x NVMe)
 One PCIe x4 “hard IP” block per NVMe drive

 Small FPGA resource usage compared to any FELIX FPGA

● Fractions of KU115 (FPGA on FLX712)

● CLB LUB 10629  (1.5%)

● LUTRAM 1896    (0.6%)

● LUT FF   13776  (1%)

● BRAM    37        (2.3%)

 (See Erdem’s talk for usage of block formatter)

 Needs optimization

● Buffers everywhere….

● Compression BRAM usage seems much too high 



Test Results – 200GByte with Seagate FireCuda

 Capture test loop: 200 Gbyte, wait 
300s then trim“ 

◦ Mean Write Data Rate: 4749.30 
MB/s
◦ Minimum: 4678.82 MB/s
◦ Median: 4772.84 MB/s
◦ Maximum: 4794.35 MB/s

◦ Mean Peak Latency: 2874922.71 us
◦ Median Peak Latency: 416566 us
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 Simple capture test loop: 20 GByte
 13:24:45.723: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4820.820 MBytes/s, PeakLatancy:  4248240 us
 13:24:50.673: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4840.849 MBytes/s, PeakLatancy:     2989 us
 13:24:55.623: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.082 MBytes/s, PeakLatancy:     2990 us
 13:25:00.572: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4840.852 MBytes/s, PeakLatancy:     3003 us
 13:25:05.521: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4836.156 MBytes/s, PeakLatancy:     3004 us
 13:25:10.471: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4836.292 MBytes/s, PeakLatancy:     3004 us
 13:25:15.420: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4843.474 MBytes/s, PeakLatancy:  4228370 us
 13:25:20.370: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4835.163 MBytes/s, PeakLatancy:     3013 us
 13:25:25.319: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4835.042 MBytes/s, PeakLatancy:     3028 us
 13:25:30.269: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4838.537 MBytes/s, PeakLatancy:     3027 us
 13:25:35.218: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.713 MBytes/s, PeakLatancy:     3021 us
 13:25:40.167: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4833.900 MBytes/s, PeakLatancy:     3037 us
 13:25:45.117: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.244 MBytes/s, PeakLatancy:     3035 us
 13:25:50.066: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4836.052 MBytes/s, PeakLatancy:     6701 us



Test Results – Samsung 970 Pro
• PCIe 3 interface ( c.f. 

gen 4 on FireCuda)

• Lower peak 
performance than 
FireCuda

 ~4400 MBytes/s

• Much more “stable” – 
only small variations 
in transfer rate 
observed.

• Need more testing to 
ensure performance 
doesn’t fall with age

 As blocks start 
to fail and get 
mapped out.
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A Note about NVMe Devices
• Have a controller (specialized CPU)

• RAM cache

• Often have an additional cache of fast flash in addition to...

• Main flash memory

• FireCuda devices

 Phison controller with PCIe 4

 RAM cache

 SLC NAND cache

 TLC NAND

• Samsung 970 Pro devices

 Controller with PCIe 3

 RAM cache

 MLC NAND

29/7/202027 Upstream DAQ Technology Review | David Cussans
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Need / Will deliver:

• Integration with Felix firmware

 Need AXI4S ↔ Full mode. Announced by Felix/Wupper team (or 
use adaptation of Simone Ponzio’s CR Interface

• Need Wishbone/AIX4L interface. Either use IPBus over Wupper or 
Felix/Wupper Wishbone interface

• Need API for event fragment request.

• Need API for super Nova trigger request

• Need Felix low level driver ( “Felix Core” )

• Will provide interface to low-level IPBus register access

• Will provide software to keep track of SN data on disk and convert to 
file on front end server.

• Will provide software to monitor NVMe status ( interface to NVMe 
status registers )
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Readout Modes

1) Trigger requests for windows of few [us] to few 
seconds
• This is the main mode of operation. Handled by buffer manager (see previous talk). 

 ROI in time by choosing event fragment start/end time

 ROI in channel number by unpacking on front-end server and selecting channels
 Does not require decompression, but does require unpacking of memory 

structure read out from FPGA

• 2) Debug / calibration data streaming
• Debug streaming: keep existing firmware infrastructure in place to read out raw link data.

• Calibration data: Time of calibration events should be known → Can use a event 
fragment request with special type.

• 3) SNB
• Stream ~ 100s of compressed data to NVMe on receipt of trigger. Read out slowly. (see 

this talk)
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Known Failure Scenarios

1) Low level FE failure
• Data reception will perform check-sum / data integrity checks (see talk on hit finding) 

 Corrupt data not passed to hit-finding pipelines.

 Corrupt data not passed to buffer manager

 ProtoDUNE-1 infrastructure remains - corrupt data can be read out for debugging if it 
can be parsed by interface to “Central Router”.

 It may be worth adding capture buffers capable of capturing a few WIB frames of 
data.

 Data integrity checks only partially implemented so far.

• 2) Link alignment error
• Currently data reception leaves gaps in data for missing WIB frames. Probably better to 

discard an entire “super packet” (set of 64 WIB frames) to avoid risk of spurious hits.

• 3) Uncompressable data
• Will be able to turn off compression on a link-by-link basis (f/ware structure makes this 

straight forward)
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Features
• Existing:

 Stand-alone buffer management

 Stand-alone block formatting

 Stand-alone NVMe writing. 
 Meets requirements ( 4300 MBytes/s , c.f. ~ 3250 MBytes/s )  

• Missing:

 Integration of buffer management 
 To Felix/Wupper framework

 Event fragment requests
 SN triggers

 To block formatting + NVMe

 Integration of NVMe interface
 Start NVMe block for next burst needs to be written before SN trigger.
 Need software to read contents of two NVMe drives, check for data integrity, build one 400GByte file 

from 2 x 200GBytes of NVMe blocks.
 After read, unused blocks (probably) need to be TRIMed to mark as free.

 Component selection
 Need NVMe drives suitable for writing 200GByte continuously

 Endurance testing
 Need to check that NVMe drives will delivery acceptable performance for lifetime of DUNE
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Adaptability

• Allows flexibility of approach as to where buffer placed (FPGA, server).

● (Existing “FELIX” infrastructure remains in place.)

• DUNE remains cost constrained  → 

 Moving functionality closer to front end give possibility of more APAs 
per server and lower total hardware cost and power.

● Only “triggered” data has to move across PCIe. 70GBit/s per APA → 
100 Mbit/s (for DUNE, ProtoDUNE more ). 

 PCIe board with NVMe connectors and RAM doesn’t have to populate 
them if server cost drops more rapidly than expected and DUNE has 
more funding than expected.

 i.e. can move to “server centric” if new requirements emerge and 
funding permits.

 Adding connectors for NVMe, RAM small cost
 May be an issue having sufficient MGTs for both ATLAS use (48 

input links) and two NVMe interfaces.
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Adaptability

• Can be scaled to 2 ( or 1.5 ) APA per FPGA (dependant on hardware)

• Readout of PDS likely “straight to server” 

 Could implement similar system as for TPC
 Perform hit finding on zero suppressed data
 But …… PDS lower bandwidth – single 4.8GBit/s link, cf. ten 

9.6Gbit/s
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Adaptability

• The firmware can be ported to other boards (Xilinx FPGA devices) easily

• Works with different DDR4 RAM physical connection schemes (e.g. ZCU102 
and KCU105 boards are different)

• Porting to other FPGA devices is possible (e.g Intel/Altera devices)

• Currently there are FPGA devices having Gigabytes of on-chip RAM (Xilinx 
HBM technology)

• Can support uncompressed data (write/read access speed is adequate to 
RAM. Add NVMe drive(s) ) 

• Can support different readout modes (ROI based) either by adding extra 
filtering in the output selector (no performance penalty) or repacking in 
software
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Reliability

• Check data integrity at input to firmware
● Still to be implemented
● Drop data in controlled manner if downstream “stalls”

• Parts of the firmware can be turned on/off targeting faulty inputs
● Debugging buffers inside FPGA for data capture and diagnostics.
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Support and Maintenance

• Firmware relies on Felix framework

 Will be supported for ATLAS

 Bandwidth to host sufficiently low with buffer-on-FPGA approach that 
other HEP-supported frameworks with lower bandwidth are possible.

 e.g. IPBus over PCIe , supported by CMS

• NVMe firmware is commercial but open source.

 Modifications/enhancements either in-house or purchasing support from 
BEAM

• NVMe devices are multi-vendor and currently still improving in performance

 Need to select and evaluate correct device, but out of two devices 
evaluated one exceeds requirements

 Multi-vendor preferable to single-vendor lock-in

• Have built a team that can develop and support firmware.

 Verify all features on PD2 then go to “maintenance mode”

29/7/202036 Upstream DAQ Technology Review | David Cussans



Resource Requirements
• Firmware relies on Felix framework

 Will be supported for ATLAS

 Bandwidth to host sufficiently low with buffer-on-FPGA approach that 
other HEP-supported frameworks with lower bandwidth are possible.

 e.g. IPBus over PCIe

• NVMe firmware is commercial but open source.

 Modifications/enhancements either in-house or purchasing time from 
BEAM

• NVMe devices are multi-vendor and currently still improving in performance

 Need to select and evaluate correct device, but out of two devices 
evaluated one exceeds requirements

 Multi-vendor preferable to single-vendor lock-in

• Have built a team that can develop and support firmware.
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Summary
• Ability to keep data in FPGA drastically reduces bandwidth to upstream server

● Flexibility to reduce cost, power if needed.

• Prototypes exist for the components needed for 10s + 100s buffer system.

• NVMe storage a compelling choice for 100s buffer

● Required performance demonstrated with one (of two) models tested.

• Buffer management firmware (10s, 100s) needs to be integrated with FELIX 
and Hit-finding blocks

● Can use evaluation boards for up to 1 APA

● e.g. XUP3R , Virtex Ultrascale VU9P. Port of “Vanilla Felix”. 12 input 
links, Up to 512GByte RAM, waiting for release of expansion port → 
NVMe cable.

• Needs software integration with DAQ

● Test at PD2
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Backup Slides



Example NVMe Test Script
test3(){
echo "Simple capture test loop: 200 GByte with delayed trim"
./test_nvme -d 2 -s 0 -n 52428800 trim
./test_nvme -nr -d 2 -s 52428800 -n 52428800 trim
# Let NVMe's perform some trimming
sleep 20
while true; do
./test_nvme -nr -d 2 -s 0 -n 52428800 capture
sleep 10
./test_nvme -nr -d 2 -s 52428800 -n 52428800 capture
sleep 10
done
}
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Storage Costs
 Taken from https://thememoryguy.com/intels-optane-dimm-price-model/ 

(2019 data)
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Type Density Price $/GB

DRAM 32GB $374.71 $11.71

DRAM 64GB $708.25 $11.07

DRAM 128GB $1,913.21 $14.95

DRAM 256GB $5,952.00 $23.25

Optane (DIMM) 128GB $577.00 $4.51

Optane (DIMM) 256GB $2,125.00 $8.30

Optane (DIMM) 512GB $6,751.00 $13.19

NVMe (Samsung) 512GB $169.99 $0.33

NVMe (Samsung) 1TB $349.94 $0.35

https://thememoryguy.com/intels-optane-dimm-price-model/
https://thememoryguy.com/intels-optane-dimm-price-model/


KCU105 and dual NVME

29/07/2020 Technology - ESDG - 
Rob Halsall
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KCU105 and dual NVME at RAL

• ‘Duplicate’ of Beam test rig

• Dual Xeon Server

• KCU105 Dev Board

• Opsero Dual NVME Carrier 
FMC

• 2 x Firecuda 500GB shown

• 2 x Samsung 970 Pro 
512GB available

• See Adams slides for 
results …

29/07/2020 Technology - ESDG - 
Rob Halsall
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**VCU118 below KCU105 …



NvmeStorage: Specifications
 Sustained data rate of 4 GBytes/s
 Able to store 2 x 200 GByte data chunks
 Able to handle NVMe latency issues
 Raw FPGA data stream input
 Low FPGA resource usage (No CPU cores etc.)
 Host CPU manages the system.
 Host CPU can read the data whilst writes are in 

progress.
 Target Xilinx Ultrascale[+] and Vesal. 
 Open source. (Apache Licence) 



NvmeStorage: Structure
 PCIe Gen3 stable, Gen4 port in progress.
 4 lane PCIe Gen3 has a peak data rate of 

around 4 GB/s
 Current commodity NVMe’s have a write data 

rate of ~2.4 GB/s
 Design uses two NVMe’s working in parallel. 

Blocks written to alternate drives.
 Uses two Xilinx PCIe hard blocks
 Implemented in FPGA state machines
 Hard coded NVMe parameters for simplicity 

(Block size, Doorbell stride and size)



Test Results – Small Chunks NVIDIA FireCuda

 Test 1 - "Simple capture test loop: 
20 GByte“

◦ N = 39
◦ Mean Write Data Rate: 4804.15 

MB/s
◦ Minimum: 3171.61 MB/s
◦ Median: 4836.78 MB/s
◦ Maximum: 4931.12 MB/s

◦ Mean Peak Latency: 456188 us
◦ Median Peak Latency: 3020 us

◦ Difference from mean to median 
shows instability

◦ Instability in FireCuda drives also 
found in testing by BEAM 
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 Simple capture test loop: 20 GByte
 13:24:45.723: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4820.820 MBytes/s, 

PeakLatancy:  4248240 us
 13:24:50.673: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4840.849 MBytes/s, 

PeakLatancy:     2989 us
 13:24:55.623: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.082 MBytes/s, 

PeakLatancy:     2990 us
 13:25:00.572: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4840.852 MBytes/s, 

PeakLatancy:     3003 us
 13:25:05.521: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4836.156 MBytes/s, 

PeakLatancy:     3004 us
 13:25:10.471: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4836.292 MBytes/s, 

PeakLatancy:     3004 us
 13:25:15.420: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4843.474 MBytes/s, 

PeakLatancy:  4228370 us
 13:25:20.370: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4835.163 MBytes/s, 

PeakLatancy:     3013 us
 13:25:25.319: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4835.042 MBytes/s, 

PeakLatancy:     3028 us
 13:25:30.269: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4838.537 MBytes/s, 

PeakLatancy:     3027 us
 13:25:35.218: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.713 MBytes/s, 

PeakLatancy:     3021 us
 13:25:40.167: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4833.900 MBytes/s, 

PeakLatancy:     3037 us
 13:25:45.117: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.244 MBytes/s, 

PeakLatancy:     3035 us
 13:25:50.066: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4836.052 MBytes/s, 

PeakLatancy:     6701 us



  

Upstream DAQ Technology Review

●  100s Buffer – Firmware

● Criteria based assessment.

David Cussans
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Outline

• Introduction to 100s buffer

• Stream Formatter

 Split ~ 320 GByte packet from buffer manager into 4kByte packets for storage

• NVMe Storage

 Compressed data written to two drives in 100 sec.

• Integration with DUNE DAQ

• Readout Operation Modes

• Response to “Known Failure” scenarios

• Criteria Based Assessment

 Features

 Adaptability

 Reliability

 Maintenance

 Resource

29/7/20202 Upstream DAQ Technology Review | David Cussans
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Bandwidth Requirements (TPC)

• 2590 ADC channels per APA

• 2 Msample/s, 12-bit

• → 60Gbit/s raw data

• ~ 10% overhead for headers etc.

• Factor ~ 2.6 compression (on limited ProtoDUNE study)

• → 3250 MBytes/s data rate to buffer 

29/7/20203 Upstream DAQ Technology Review | David Cussans
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Message/Data flow for 100s buffer 

29/7/20204 Upstream DAQ Technology Review | David Cussans
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Firmware Part

29/7/20205 Upstream DAQ Technology Review | David Cussans

5



Software Part

• At initialization:

 Set up size of Super Nova capture

 Write to IPBus register over Wupper interface (using Felix routines)

 Set start location of Super Nova data in NVMe

 Write to IPBus register over Wupper

• During run, on receipt of SN trigger: 

 Write to IPBus register over Wupper to initiate Super Nova capture

 Monitor progress of capture

 When complete, update start location of SN data in NVMe, ready for next 
trigger

 Read SN data from NVMe drives

 Write to IPBus register, receive AXI4 packet converted to full-mode packet.

 Combine data from two NVMe drives, strip headers, check CRCs, transmit to 
back-end DAQ.

29/7/20206 Upstream DAQ Technology Review | David Cussans
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DUNE Block Formatting 
Firmware
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NVME Format Block
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NVME Format Block Internal
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250 MHz250 MHz

IPBus
• Reset/Control/Error Recovery not 

shown
• Padder pads to 4k boundary.
• Splitter cuts into 4k block
• CRC32 will move inside Header 

Inserter block
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NVME Format Block Internal - 
implemented
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250 MHz250 MHz

IPBus
• Control Path, Stats & CRC not 

implemented yet
• Enough blocks written to test the design
• Physical top layer test bench for timing 

closure tests – meets 250MHz
• Integration of format block with NVMe 

firmware underway
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NVME Super Packet to Sub Packet 

Super Packet 
1 

• Super Packet (Large) is broken into multiple sub packets which are 4K Bytes and are labelled with 
a Header (32B) containing super packet no, sub packet number, CRC32, payload cycles and flags.

• The super packet number is constant for all its sub packets and the sub packet number 
increments fro 0 to N where is the number of sub packets -1 contained within the super packet.

• The last packet may have padding (zeros) added and payload cycles will be lower in size in the 
header of the last packet to reflect this

Super Packet 
2 

Super Packet 
0 

4064 Bytes 4064 Bytes 4064 Bytes 4064 BytesH H H H

Sub Packet 0

Pad
Zero

s

Sub Packet 1 Sub Packet 2 Sub Packet N
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NVME Sub Packet Format

8 BYTE - SUPER PACKET COUNT 8 BYTE - SUB PACKET COUNT
8 BYTE - FLAGS & PAYLOAD 

CYCLES
8 BYTE - ETHERNET CRC32

4064 Bytes

HEADER

PAYLOAD

• HEADER shown is a proposal of a general form – field, sizes and flags
• Header now inserted as a single clock cycle 256 bit wide word for simplicity of design – doubled in size 

over previous slides
• Packet is 4096 Bytes with 32 byte header and 4064 byte payload
• Some flexibility in field sizes and header contents
• Uniquely identify packets & detect errors

29/07/2020



  

 

NVME + Formatter Block Test Bench

NVME 
FORMAT
BLOCK

AXIS 256 
@250MHz

AXIS 256 
@250MHz

NVME
DRIVER

IP

Data 
Gen

29/07/2020

AXI4
L

AXI4
L

• In Progress

• Insert Data Gen and NVEM Formatter Block into Beam test design
• Use to write our data stream and format into NVME drives via Beam IP
• Added ILAs to AXIS buses in and out of NVME Formatter block
• Design Compiles – debug in progress
• Needs test software to confirm operation



  

 

Summary

29/07/2020 Technology - ESDG - Rob Halsall 14

• Initial version of formatter Block - on STFC 
Gitlab and CERN Gitlab
● https://gitlab.cern.ch/DUNE-SP-TDR-DAQ/nvme-block-formatting 

• Timing closure at 250 MHz standalone
• Integration with Beam test design in progress

• Use our data gen and formatter as data 
source

• Some minor bugs to resolve in 
formatter/checker

• Add features such as CRC, monitoring, control 
plane as we move forward and integrate 
designs

• Needs integration with firmware build tool 
(ipbb) and rest of project

KCU105

VCU118



  

 

NvmeStorage – Beam Ltd
Terry Barnaby of Beam Ltd

 Beam: Electronics and Software Engineering

 Instrumentation a focus

 Electronics design

 Software design

 Unit/product design

 Scientific systems

 Based in Yate, near Bristol in the UK

 https://portal.beam.ltd.uk/support/dune



  

 

NVMe Documentation 

• Beam: https://portal.beam.ltd.uk/support/dune/

• Git repository (clone URL) 
https://portal.beam.ltd.uk/git/DuneNvme.git

• General documentation is at: 

• Doxygen documentation at: 
https://portal.beam.ltd.uk/support/dune/files/doc/DuneNvme/fpga/html/



  

 

Dune DAQ – NVMe event storage

FPGA module to store 20 – 200 GBytes of event data
4 GBytes/s data rate for 100 seconds
512 Gbyte drives – so two 200 GByte events per drive

NvmeStorage - Introduction

80mm



  

 

NvmeStorage: Data structure
 The Dune DAQ system generates a “super” packet of 

around 128 kBytes of data (variable due to 
compression)

 The NvmeStorage system simply stores 4 kByte blocks 
of data by block number (super block padded to 4k).

 The Dune DAQ provides around 1 second of buffering 
to handle NVMe latencies (10% of buffer).

 Back-pressure from NVMe will result in packets being 
dropped by buffer manager.

 Blocks have header/footer to handle lost blocks.



  

 

NvmeStorage: API

 AXI4 Data Stream 256 Bits 
at 250 MHz.

 AXI4 Lite “bus” for register 
access by host (may change 
to IPBus)

 AXI4 data stream (128 bits) 
for reading data and control 
replies.

 Optional AXI4 control 
stream providing host with 
access to NVMe drives



  

 

NvmeStorage: Internals

NVMe
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NvmeStorage: Test Rig

 Xilinx KCU105 board Ultrascale

 Kintex XCKU040-2FFVA1156E 

 AB17-M2FMC dual NVMe board

 Basic PC

 Fedora 31 as OS

 Using Beam’s bfpga PCIe driver

 RAL, Bristol have duplicate test rigs

 Samsung 970, Seagate FireCuda NVMe under test

 Simple incrementing 32 bit value FPGA data source



  

 

NvmeStorage: NVMe’s

 Have limited endurance ~600 TBytes 512 GByte device

 Can trade off cost v.s. lifetime ( large NVMe devices cost 
more, but will last longer).

● 1 x 200 GByte chunk per day – 2 x 512G ~8 Years

● 1 x 200 GByte chunk per day – 2 x 1T ~16 Years

 Peak write latency is usually not defined in specs. , 
depends on many factors including NVMe engine and 
firmware, device structure and age etc.

 We will test at least 3 types of devices, we will run one 
set of drives to destruction storing metrics (about a week 
at full data rate).



  

 

NvmeStorage: Status

 Firmware block complete.

 Waiting for verification by DUNE before final 
invoice.

 Test firmware available for KCU105 (KU040)

 Ported to K800 in Bristol (KU115)

 Ported to VCU118 (VU9P)

 Needs testing.
 Will be ported to VMK180 (VM1802) in Oxford.

 Tests under way with different NVMe devices



  

 

NvmeStorage: Resource Usage (2 x NVMe)
 One PCIe x4 “hard IP” block per NVMe drive

 Small FPGA resource usage compared to any FELIX FPGA

● Fractions of KU115 (FPGA on FLX712)

● CLB LUB 10629  (1.5%)

● LUTRAM 1896    (0.6%)

● LUT FF   13776  (1%)

● BRAM    37        (2.3%)

 (See Erdem’s talk for usage of block formatter)

 Needs optimization

● Buffers everywhere….

● Compression BRAM usage seems much too high 



  

 

Test Results – 200GByte with Seagate FireCuda
 Capture test loop: 200 Gbyte, wait 
300s then trim“ 

◦ Mean Write Data Rate: 4749.30 
MB/s
◦ Minimum: 4678.82 MB/s
◦ Median: 4772.84 MB/s
◦ Maximum: 4794.35 MB/s

◦ Mean Peak Latency: 2874922.71 us
◦ Median Peak Latency: 416566 us
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 Simple capture test loop: 20 GByte
 13:24:45.723: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4820.820 MBytes/s, PeakLatancy:  4248240 us
 13:24:50.673: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4840.849 MBytes/s, PeakLatancy:     2989 us
 13:24:55.623: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.082 MBytes/s, PeakLatancy:     2990 us
 13:25:00.572: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4840.852 MBytes/s, PeakLatancy:     3003 us
 13:25:05.521: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4836.156 MBytes/s, PeakLatancy:     3004 us
 13:25:10.471: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4836.292 MBytes/s, PeakLatancy:     3004 us
 13:25:15.420: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4843.474 MBytes/s, PeakLatancy:  4228370 us
 13:25:20.370: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4835.163 MBytes/s, PeakLatancy:     3013 us
 13:25:25.319: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4835.042 MBytes/s, PeakLatancy:     3028 us
 13:25:30.269: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4838.537 MBytes/s, PeakLatancy:     3027 us
 13:25:35.218: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.713 MBytes/s, PeakLatancy:     3021 us
 13:25:40.167: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4833.900 MBytes/s, PeakLatancy:     3037 us
 13:25:45.117: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.244 MBytes/s, PeakLatancy:     3035 us
 13:25:50.066: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4836.052 MBytes/s, PeakLatancy:     6701 us



Test Results – Samsung 970 Pro
• PCIe 3 interface ( c.f. 

gen 4 on FireCuda)

• Lower peak 
performance than 
FireCuda

 ~4400 MBytes/s

• Much more “stable” – 
only small variations 
in transfer rate 
observed.

• Need more testing to 
ensure performance 
doesn’t fall with age

 As blocks start 
to fail and get 
mapped out.

29/7/202026 Upstream DAQ Technology Review | David Cussans
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A Note about NVMe Devices
• Have a controller (specialized CPU)

• RAM cache

• Often have an additional cache of fast flash in addition to...

• Main flash memory

• FireCuda devices

 Phison controller with PCIe 4

 RAM cache

 SLC NAND cache

 TLC NAND

• Samsung 970 Pro devices

 Controller with PCIe 3

 RAM cache

 MLC NAND

29/7/202027 Upstream DAQ Technology Review | David Cussans

Controller

RAM Cache

SLC Cache

TLC Main

Controller

RAM Cache

MLC Main

FireCuda 970 Pro
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Need / Will deliver:

• Integration with Felix firmware

 Need AXI4S ↔ Full mode. Announced by Felix/Wupper team (or 
use adaptation of Simone Ponzio’s CR Interface

• Need Wishbone/AIX4L interface. Either use IPBus over Wupper or 
Felix/Wupper Wishbone interface

• Need API for event fragment request.

• Need API for super Nova trigger request

• Need Felix low level driver ( “Felix Core” )

• Will provide interface to low-level IPBus register access

• Will provide software to keep track of SN data on disk and convert to 
file on front end server.

• Will provide software to monitor NVMe status ( interface to NVMe 
status registers )

29/7/202028 Upstream DAQ Technology Review | David Cussans
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Readout Modes

1) Trigger requests for windows of few [us] to few 
seconds
• This is the main mode of operation. Handled by buffer manager (see previous talk). 

 ROI in time by choosing event fragment start/end time

 ROI in channel number by unpacking on front-end server and selecting channels
 Does not require decompression, but does require unpacking of memory 

structure read out from FPGA

• 2) Debug / calibration data streaming
• Debug streaming: keep existing firmware infrastructure in place to read out raw link data.

• Calibration data: Time of calibration events should be known → Can use a event 
fragment request with special type.

• 3) SNB
• Stream ~ 100s of compressed data to NVMe on receipt of trigger. Read out slowly. (see 

this talk)

29/7/202029 Upstream DAQ Technology Review | David Cussans
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Known Failure Scenarios

1) Low level FE failure
• Data reception will perform check-sum / data integrity checks (see talk on hit finding) 

 Corrupt data not passed to hit-finding pipelines.

 Corrupt data not passed to buffer manager

 ProtoDUNE-1 infrastructure remains - corrupt data can be read out for debugging if it 
can be parsed by interface to “Central Router”.

 It may be worth adding capture buffers capable of capturing a few WIB frames of 
data.

 Data integrity checks only partially implemented so far.

• 2) Link alignment error
• Currently data reception leaves gaps in data for missing WIB frames. Probably better to 

discard an entire “super packet” (set of 64 WIB frames) to avoid risk of spurious hits.

• 3) Uncompressable data
• Will be able to turn off compression on a link-by-link basis (f/ware structure makes this 

straight forward)

29/7/202030 Upstream DAQ Technology Review | David Cussans
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Features
• Existing:

 Stand-alone buffer management

 Stand-alone block formatting

 Stand-alone NVMe writing. 
 Meets requirements ( 4300 MBytes/s , c.f. ~ 3250 MBytes/s )  

• Missing:

 Integration of buffer management 
 To Felix/Wupper framework

 Event fragment requests
 SN triggers

 To block formatting + NVMe

 Integration of NVMe interface
 Start NVMe block for next burst needs to be written before SN trigger.
 Need software to read contents of two NVMe drives, check for data integrity, build one 400GByte file 

from 2 x 200GBytes of NVMe blocks.
 After read, unused blocks (probably) need to be TRIMed to mark as free.

 Component selection
 Need NVMe drives suitable for writing 200GByte continuously

 Endurance testing
 Need to check that NVMe drives will delivery acceptable performance for lifetime of DUNE

29/7/202031 Upstream DAQ Technology Review | David Cussans
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Adaptability

• Allows flexibility of approach as to where buffer placed (FPGA, server).

● (Existing “FELIX” infrastructure remains in place.)

• DUNE remains cost constrained  → 

 Moving functionality closer to front end give possibility of more APAs 
per server and lower total hardware cost and power.

● Only “triggered” data has to move across PCIe. 70GBit/s per APA → 
100 Mbit/s (for DUNE, ProtoDUNE more ). 

 PCIe board with NVMe connectors and RAM doesn’t have to populate 
them if server cost drops more rapidly than expected and DUNE has 
more funding than expected.

 i.e. can move to “server centric” if new requirements emerge and 
funding permits.

 Adding connectors for NVMe, RAM small cost
 May be an issue having sufficient MGTs for both ATLAS use (48 

input links) and two NVMe interfaces.

29/7/202032 Upstream DAQ Technology Review | David Cussans
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Adaptability

• Can be scaled to 2 ( or 1.5 ) APA per FPGA (dependant on hardware)

• Readout of PDS likely “straight to server” 

 Could implement similar system as for TPC
 Perform hit finding on zero suppressed data
 But …… PDS lower bandwidth – single 4.8GBit/s link, cf. ten 

9.6Gbit/s

29/7/202033 Upstream DAQ Technology Review | David Cussans
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Adaptability

• The firmware can be ported to other boards (Xilinx FPGA devices) easily

• Works with different DDR4 RAM physical connection schemes (e.g. ZCU102 
and KCU105 boards are different)

• Porting to other FPGA devices is possible (e.g Intel/Altera devices)

• Currently there are FPGA devices having Gigabytes of on-chip RAM (Xilinx 
HBM technology)

• Can support uncompressed data (write/read access speed is adequate to 
RAM. Add NVMe drive(s) ) 

• Can support different readout modes (ROI based) either by adding extra 
filtering in the output selector (no performance penalty) or repacking in 
software

29/7/202034 Upstream DAQ Technology Review | David Cussans
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Reliability

• Check data integrity at input to firmware
● Still to be implemented
● Drop data in controlled manner if downstream “stalls”

• Parts of the firmware can be turned on/off targeting faulty inputs
● Debugging buffers inside FPGA for data capture and diagnostics.

29/7/202035 Upstream DAQ Technology Review | David Cussans
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Support and Maintenance

• Firmware relies on Felix framework

 Will be supported for ATLAS

 Bandwidth to host sufficiently low with buffer-on-FPGA approach that 
other HEP-supported frameworks with lower bandwidth are possible.

 e.g. IPBus over PCIe , supported by CMS

• NVMe firmware is commercial but open source.

 Modifications/enhancements either in-house or purchasing support from 
BEAM

• NVMe devices are multi-vendor and currently still improving in performance

 Need to select and evaluate correct device, but out of two devices 
evaluated one exceeds requirements

 Multi-vendor preferable to single-vendor lock-in

• Have built a team that can develop and support firmware.

 Verify all features on PD2 then go to “maintenance mode”
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Resource Requirements
• Firmware relies on Felix framework

 Will be supported for ATLAS

 Bandwidth to host sufficiently low with buffer-on-FPGA approach that 
other HEP-supported frameworks with lower bandwidth are possible.

 e.g. IPBus over PCIe

• NVMe firmware is commercial but open source.

 Modifications/enhancements either in-house or purchasing time from 
BEAM

• NVMe devices are multi-vendor and currently still improving in performance

 Need to select and evaluate correct device, but out of two devices 
evaluated one exceeds requirements

 Multi-vendor preferable to single-vendor lock-in

• Have built a team that can develop and support firmware.

29/7/202037 Upstream DAQ Technology Review | David Cussans
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Summary
• Ability to keep data in FPGA drastically reduces bandwidth to upstream server

● Flexibility to reduce cost, power if needed.

• Prototypes exist for the components needed for 10s + 100s buffer system.

• NVMe storage a compelling choice for 100s buffer

● Required performance demonstrated with one (of two) models tested.

• Buffer management firmware (10s, 100s) needs to be integrated with FELIX 
and Hit-finding blocks

● Can use evaluation boards for up to 1 APA

● e.g. XUP3R , Virtex Ultrascale VU9P. Port of “Vanilla Felix”. 12 input 
links, Up to 512GByte RAM, waiting for release of expansion port → 
NVMe cable.

• Needs software integration with DAQ

● Test at PD2

29/7/202038 Upstream DAQ Technology Review | David Cussans
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Example NVMe Test Script
test3(){
echo "Simple capture test loop: 200 GByte with delayed trim"
./test_nvme -d 2 -s 0 -n 52428800 trim
./test_nvme -nr -d 2 -s 52428800 -n 52428800 trim
# Let NVMe's perform some trimming
sleep 20
while true; do
./test_nvme -nr -d 2 -s 0 -n 52428800 capture
sleep 10
./test_nvme -nr -d 2 -s 52428800 -n 52428800 capture
sleep 10
done
}
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Storage Costs
 Taken from https://thememoryguy.com/intels-optane-dimm-price-model/ 

(2019 data)

29/7/202041 Upstream DAQ Technology Review | David Cussans

Type Density Price $/GB

DRAM 32GB $374.71 $11.71

DRAM 64GB $708.25 $11.07

DRAM 128GB $1,913.21 $14.95

DRAM 256GB $5,952.00 $23.25

Optane (DIMM) 128GB $577.00 $4.51

Optane (DIMM) 256GB $2,125.00 $8.30

Optane (DIMM) 512GB $6,751.00 $13.19

NVMe (Samsung) 512GB $169.99 $0.33

NVMe (Samsung) 1TB $349.94 $0.35
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KCU105 and dual NVME

29/07/2020 Technology - ESDG - 
Rob Halsall
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KCU105 and dual NVME at RAL

• ‘Duplicate’ of Beam test rig

• Dual Xeon Server

• KCU105 Dev Board

• Opsero Dual NVME Carrier 
FMC

• 2 x Firecuda 500GB shown

• 2 x Samsung 970 Pro 
512GB available

• See Adams slides for 
results …

29/07/2020 Technology - ESDG - 
Rob Halsall
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NvmeStorage: Specifications
 Sustained data rate of 4 GBytes/s
 Able to store 2 x 200 GByte data chunks
 Able to handle NVMe latency issues
 Raw FPGA data stream input
 Low FPGA resource usage (No CPU cores etc.)
 Host CPU manages the system.
 Host CPU can read the data whilst writes are in 

progress.
 Target Xilinx Ultrascale[+] and Vesal. 
 Open source. (Apache Licence) 



  

 

NvmeStorage: Structure
 PCIe Gen3 stable, Gen4 port in progress.
 4 lane PCIe Gen3 has a peak data rate of 

around 4 GB/s
 Current commodity NVMe’s have a write data 

rate of ~2.4 GB/s
 Design uses two NVMe’s working in parallel. 

Blocks written to alternate drives.
 Uses two Xilinx PCIe hard blocks
 Implemented in FPGA state machines
 Hard coded NVMe parameters for simplicity 

(Block size, Doorbell stride and size)



  

 

Test Results – Small Chunks NVIDIA FireCuda

 Test 1 - "Simple capture test loop: 
20 GByte“

◦ N = 39
◦ Mean Write Data Rate: 4804.15 

MB/s
◦ Minimum: 3171.61 MB/s
◦ Median: 4836.78 MB/s
◦ Maximum: 4931.12 MB/s

◦ Mean Peak Latency: 456188 us
◦ Median Peak Latency: 3020 us

◦ Difference from mean to median 
shows instability

◦ Instability in FireCuda drives also 
found in testing by BEAM 
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 Simple capture test loop: 20 GByte
 13:24:45.723: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4820.820 MBytes/s, 

PeakLatancy:  4248240 us
 13:24:50.673: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4840.849 MBytes/s, 

PeakLatancy:     2989 us
 13:24:55.623: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.082 MBytes/s, 

PeakLatancy:     2990 us
 13:25:00.572: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4840.852 MBytes/s, 

PeakLatancy:     3003 us
 13:25:05.521: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4836.156 MBytes/s, 

PeakLatancy:     3004 us
 13:25:10.471: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4836.292 MBytes/s, 

PeakLatancy:     3004 us
 13:25:15.420: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4843.474 MBytes/s, 

PeakLatancy:  4228370 us
 13:25:20.370: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4835.163 MBytes/s, 

PeakLatancy:     3013 us
 13:25:25.319: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4835.042 MBytes/s, 

PeakLatancy:     3028 us
 13:25:30.269: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4838.537 MBytes/s, 

PeakLatancy:     3027 us
 13:25:35.218: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.713 MBytes/s, 

PeakLatancy:     3021 us
 13:25:40.167: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4833.900 MBytes/s, 

PeakLatancy:     3037 us
 13:25:45.117: ErrorStatus: 0x0, StartBlock:        0, DataRate: 4834.244 MBytes/s, 

PeakLatancy:     3035 us
 13:25:50.066: ErrorStatus: 0x0, StartBlock:  5242880, DataRate: 4836.052 MBytes/s, 

PeakLatancy:     6701 us
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