
Summary of “Function and Class Templates”

Marc Paterno

8 July 2020



Section 1

My summary

2/10 8 July 2020 Paterno | Summary of “Function and Class Templates”



When to write a template

Templates as machines to generate code; use them to avoid writing repeated things.
function overload set generated from a single template

family of related classes

Extensibility without the tighter coupling of inheritance, e.g.
You can make your type behave like a Standard Library container by defining the right set

of member functions and member types.

This will improve with concepts in C++20 (Saks did not address this).

Why not just a macro?
Templates allow the compiler to manipulate types in a way macros can not.

Macro expansion involves no type checking; template instantiation does.

Templates can be used for type computations, e.g. C::value_type is the type stored in

any Standard Library container template C.

3/10 8 July 2020 Paterno | Summary of “Function and Class Templates”



Instantiation

Functions get generated from function templates; classes and structs from class and

struct templates

std::swap is not the name of a function; std::swap<int> is the name of a function.

std::vector is not the name of a class; std::vector<double> is the name of a class.

std::vector<T> and std::swap<T> are template-ids.

Two-phase parsing is valuable to understand, especially when reasoning about error

messages

phase 1: when the template is first read. The compiler does not know what the template

parameters are — they are just names.

phase 2: when the use of a template is seen by the compiler. The compiler must have

seen the template-id before this. The compiler now knows what the template parameters

are, and can (attempt to) instantiate the template.

4/10 8 July 2020 Paterno | Summary of “Function and Class Templates”



What can template parameters be?

types (this is most common in code I see, and in code I write)

non-types of a few varieties:
integral and enumeration values

pointer or reference to a class object

pointer or reference to a function (not a template-id!)

pointer or reference to member function

E.g., template <typename T, std::size_t N> array

5/10 8 July 2020 Paterno | Summary of “Function and Class Templates”



Writing class templates
Saks recommends writing member functions of class templates in the class template

definition, to reduce typing:

template <typename T> struct Thing {

T func() { return do_something(); }

}

I prefer separating declarations from definitions, which I find makes it easier to see the

interface of the class:

template <typename T> struct Thing {

T func();

}

template <typename T> T Thing<T>::func() {return do_something();}

For the discussion: what do you prefer and why?

6/10 8 July 2020 Paterno | Summary of “Function and Class Templates”



Efficiency issues

Each template instantiation is done only once per compilation unit

.cc file, after header inclusion is done; what the compiler (not preprocessor) actually sees.

Possible “code bloat”: given template instantiation can happen in many compilation

units; linker strips out duplicates. Remember linker makes .so and executables; so

many .sos can have the same template instantiation.

Runtime linker behavior is outside of C++ standard specification. Real ones run into

trouble with class templates that have static data initialized in multiple dynamic

libraries.

7/10 8 July 2020 Paterno | Summary of “Function and Class Templates”



Improvements in recent C++ versions

inline data allows definition (not just declaration) of static data members in class

templates.

but we should not be encouraging non-const static data

Much uglier before C++17.

Function template parameter deduction has been around since C++98:

int i = 1, j=0;

std::swap(i, j); // compiler deduces std::swap<int>

Class template parameter deduction new in C++17

std::vector v {1.0, 2.5}; // compiler deduces std::vector<double>

std::array a {1, 2}; // compiler deduces std::array<int, 2>

8/10 8 July 2020 Paterno | Summary of “Function and Class Templates”



Useful names to remember

When you’re searching the internet for an answer to a template programming question, it is

useful to have the meaning several names clear in mind:

std::swap is the name of a (function) template

std::swap<T> is a template-id

std::swap<int> is a template specialization

template void swap<int>(int& a, int& b) is an explicit instantiation definition

extern template void swap<int>(int&a, int& b) is an explicit instantiation

declaration (means it is defined elsewhere)

template <> void swap<int>(int& a, int&b ) { a = 0; b = 0;} is an explicit

specialization (don’t really use this!)

9/10 8 July 2020 Paterno | Summary of “Function and Class Templates”



Section 2

Discussion

10/10 8 July 2020 Paterno | Summary of “Function and Class Templates”


	My summary
	Discussion

