
Job workfow support via condor DAGs

Dennis Box
Rick Snider
Fermilab

NuComp Meeting

Oct 19, 2011

19-Oct-2011 R. Snider 2

Outline

 Motivation

 Condor DAGs

 Supporting experiment job workfows

 Example applications

◈ MINERvA MC workfows

◈ SAM data handling jobs

◈ Everything else

 Status

3

Motivation

 Job dependencies

◈ Many grid processing tasks require multiple steps

► For example, MINERvA MC generation requires 4 serial job submissions

▻ Output from one stage feeds into the next

► More complex dependencies are on the horizon

▻ Eg., event overlays for “rock muons” could introduce additional jobs with new dependencies

► Experiment currently runs stages jobs by hand, or writes scripts to watch condor

◈ A generic tool that supports job workfows would be helpful in such cases

 Job associations

◈ Most grid computation submits same application in many parallel jobs

► Typically, many submitted at once with a single script

► A diferent input / output fle for each

► By far the most common and ubiquitous pattern of job submission

◈ These jobs are logically related in a way that is invisible to the batch
system, and therefore to generic batch system / monitoring tools

19-Oct-2011 R. Snider 4

The Condor DAG

 Condor has features to support job dependencies

◈ Uses directed acyclic graphs (DAG) to represent
job dependencies

◈ By using DAG to run a set of jobs, condor will:

► Enforce an arbitrary, user-specifed set of dependencies
between jobs

► Optionally run a script before or after any individual job

► Stop a sequence on an error

▻ Provides a “rescue” DAG in this case that knows
what has already completed successfully

► Allow additional monitoring options

▻ condor_q -dag

▻ Visualization of the execution state of the DAG

► Allow a limit on number of jobs in a DAG that are
executing at a given time

Example condor DAG
(from condor manual)

19-Oct-2011 R. Snider 5

19-Oct-2011 R. Snider 6

19-Oct-2011 R. Snider 7

19-Oct-2011 R. Snider 8

19-Oct-2011 9

Can embed in web
page as java applet

Could be useful if
color-coded

19-Oct-2011 R. Snider 10

Supporting job workfows

 Most typical use case: replicate a single pattern run in parallel

◈ Can specify a large job as N x (the pattern template)

◈ REX supporting a simple tool to assist in generating DAGs of this type

► /grid/fermiapp/common/tools/dagNabbit.py

▻ Full documentation available from the script

/grid/fermiapp/common/tools/dagNabbit.py -manual | less

► User specifes easy things

▻ Job dependency template (a fle with a few XML-style tags)

▻ Scripts for each template node that produce a list of condor command fles for that node

○ IF job submission scripts already do this

► dagNabbit.py then generates the full dependency tree and submits the DAG

19-Oct-2011 R. Snider 11

Example application (1)

 MINERvA MC workfow

◈ Original experiment submission script submits N jobs for one of four stages

◈ Modifed script to:

► Allow creation of condor command fles without submitting them

► Write a template fle for multiple steps

▻ For each node, specifes the no-submit script for a single stage

► Call dagNabbit.py with template as input

▻ dagNabbit.py assembles and submits the DAG command fle

Command line did not change, except that multiple stage fags are now
allowed.

19-Oct-2011 R. Snider 12

Example application (1)

 MINERvA MC workfow

◈ Example template fle created by the new script:

This DAG description was created by process_MC_series.pl

<serial>
./process_MC_series.pl minerva 130 -genie -no_submit -f 1 -l 5 -n 5 -g -geo Full
</serial>
<serial>
./process_MC_series.pl minerva 130 -cal -no_submit -f 1 -l 5 -n 5 -g -geo Full
</serial>
<serial>
./process_MC_series.pl minerva 130 -minos -no_submit -f 1 -l 5 -n 5 -g -geo Full
</serial>
<serial>
./process_MC_series.pl minerva 130 -reco -no_submit -f 1 -l 5 -n 5 -g -geo Full
</serial>

13

Example application (1)

 MINERvA MC workfow

◈ Resulting DAG command fle (the part we want to avoid writing by hand):

JOB Jb_1 /minerva/app/users/condor-tmp/rs/genie_wrapper_SIM_minerva_00000130_0001_v8r3.sh_20110913_235659_1.cmd
JOB Jb_2 /minerva/app/users/condor-tmp/rs/genie_wrapper_SIM_minerva_00000130_0002_v8r3.sh_20110913_235700_1.cmd
JOB Jb_3 /minerva/app/users/condor-tmp/rs/genie_wrapper_SIM_minerva_00000130_0003_v8r3.sh_20110913_235701_1.cmd
JOB Jb_4 /minerva/app/users/condor-tmp/rs/genie_wrapper_SIM_minerva_00000130_0004_v8r3.sh_20110913_235703_1.cmd
JOB Jb_5 /minerva/app/users/condor-tmp/rs/genie_wrapper_SIM_minerva_00000130_0005_v8r3.sh_20110913_235704_1.cmd
JOB Jb_6 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235705_1.cmd
JOB Jb_7 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235706_1.cmd
JOB Jb_8 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235708_1.cmd
JOB Jb_9 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235709_1.cmd
JOB Jb_10 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235710_1.cmd
JOB Jb_11 /minerva/app/users/condor-tmp/rs/MinosSim-SIM_minerva_00000130_0001_v8r3.sh_20110913_235711_1.cmd
JOB Jb_12 /minerva/app/users/condor-tmp/rs/MinosSim-SIM_minerva_00000130_0002_v8r3.sh_20110913_235712_1.cmd
JOB Jb_13 /minerva/app/users/condor-tmp/rs/MinosSim-SIM_minerva_00000130_0003_v8r3.sh_20110913_235714_1.cmd
JOB Jb_14 /minerva/app/users/condor-tmp/rs/MinosSim-SIM_minerva_00000130_0004_v8r3.sh_20110913_235715_1.cmd
JOB Jb_15 /minerva/app/users/condor-tmp/rs/MinosSim-SIM_minerva_00000130_0005_v8r3.sh_20110913_235716_1.cmd
JOB Jb_16 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235717_1.cmd
JOB Jb_17 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235718_1.cmd
JOB Jb_18 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235720_1.cmd
JOB Jb_19 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235721_1.cmd
JOB Jb_20 /minerva/app/users/condor-tmp/rs/SystemTestsApp.exe_20110913_235722_1.cmd
parent Jb_1 child Jb_6
parent Jb_2 child Jb_7
parent Jb_3 child Jb_8
parent Jb_4 child Jb_9
parent Jb_5 child Jb_10
parent Jb_6 child Jb_11
parent Jb_7 child Jb_12
parent Jb_8 child Jb_13
parent Jb_9 child Jb_14
parent Jb_10 child Jb_15
parent Jb_11 child Jb_16
parent Jb_12 child Jb_17
parent Jb_13 child Jb_18
parent Jb_14 child Jb_19
parent Jb_15 child Jb_20

14

Example application (2)

 Job that uses a SAM project to deliver fles

◈ Run all jobs associated with a given SAM dataset within a single DAG

◈ A pre-script before all application nodes starts the SAM project

◈ A post-script after all application nodes terminates the project

Just starts the project

The user applications

Terminates the project, emails a report

15

Example application (2)

 Job that uses a SAM project to deliver fles

◈ Run all jobs associated with a given SAM dataset within a single DAG

◈ A pre-script before all application nodes starts the SAM project

◈ A post-script after all application nodes terminates the project

Just starts the project

The user applications

Terminates the project, emails a report

dagNabbit.py inserts
these parts by itself

16

Example application (3)

 Any job that runs parallel instances of a single application

◈ i.e, everything we run... Really.

 Why?

◈ To manifest the logical connection between jobs that are submitted together

► e.g., jobs processing a single run or set of runs, MC for a given confguration, etc.

◈ Allows the monitoring to aggregate jobs that are logically connected

► Can simplify the long list of jobs otherwise returned by condor_q

► New monitoring depends upon this (see fgures on next 3 pages)

◈ Allows management of associated jobs as a unit

► Set a limit on the number of jobs in a DAG executing at a given time

▻ Can be an important handle for managing resource utilization (eg, disk or DB I/O)

► Can remove the single DAG process to remove all underlying jobs

► Can create a single email summary for the entire DAG

▻ Eliminates the deluge of email from the many individual jobs within a single submission

19-Oct-2011 R. Snider 17

Sample system status page

Drill-down to group or
user summary page...

19-Oct-2011 R. Snider 18

Sample user summary page

Drill-down to job
summary...

19-Oct-2011 R. Snider 19

Sample job summary page

Status of each section
within the job

Drill down to section
status page...

19-Oct-2011 R. Snider 20

Status

 Existing dagNabbit script

◈ Supports basic serial and parallel sub-sequences

► Serial steps or branching parallel steps not yet supported, but will be

► MINERvA MC submission scripts currently using this

◈ Supports startup and termination scripts for the entire DAG (almost ready)

► Needed for SAM jobs and a terminal job mailer

 To be added

◈ Support for pre and post scripts on individual nodes

◈ Integrating SAM project startup, completion

◈ Job summary mailer

 Can already start integrating into experiment submission
scripts

19-Oct-2011 R. Snider 21

The end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

