Beam Forming Test

Furen Deng & Zijie Yu July 9, 2020

National Astronomical Observatories of China Chinese Academy of Sciences

For CygA, most antennae have amplitude $A_i \approx 1.5$ after **removing** noise bottom.

Figure 1 channel 1

Figure 2 channel 3

Figure 3 channel 5

Figure 4 channel 7

Beam Forming

Then we have tried beam forming using 2 to 16 antenna (In fact, there are three bad antenna, so total **13 antenna**), we have **removed the noise**

bottom

Figure 5 channel 1, 3

Figure 6 channel 1, 3, 5

Figure 7 channel 1, 3, 5, 7

Figure 8 channel 1, 3, 5, 7, 11, 13, 15, 19, 23, 25, 27, 29, 31

More antenna doesn't improve result.

And we've also tried to calculate beam forming maximum **from single** antenna result:

$$A_s = (\sum_{i=1}^{16} A_i^2)^{\frac{1}{2}} \tag{1}$$

Figure 9 all channel

Figure 10 Maximum beam forming result from single antenna

Observing B0329+54

We use the beam forming system to observe B0329+54, the pulsar with flux 1.5 Jy at 400 MHz

Figure 11 6 pulses

Figure 12 dedispersion result

Thanks!