

Application of Micro Pattern Gas Detector @ JLAB

Kondo Gnanvo

University of Virginia, Charlottesville, VA

MPGD Snowmass 2021 - Bi-weekly Meeting - July 10, 2020

Outline

- GEM Trackers in High Rate Environment in Hall A JLab
- MPGDs for various Hall B Experimental Programs
- ❖ MPGD development for the Future Detector Upgrade @JLab

GEM Trackers in High Rate Environment in Hall A JLab

Super Bigbite Spectrometer (SBS) in Hall A @ JLab

Nucleon form factors

- Encode electric and magnetic structure of the nucleon
- Parametrize the properties of the quark and gluon
- Limited neutron measurements in terms the Q² range and the precision
- Better access to relatively small G_
- No recoil polarimetery measurement above Q² of 1.5 GeV² In High Q² range:
 - → G_E measurement will sensitive to up and down quark distributions in quark core
 - → Insight to the complete set of form factors in the region with small pion cloud contributions

The Super-BigBite Spectrometer (SBS) in Jlab's Hall A will measure the G_E to high Q² (>10 GeV²) using high luminosity + open geometry + GEM detectors

→ Allows for flavor decomposition to distance scales deep inside the nucleon

SBS GEM trackers:

- High counting rate (~ 500 kHz/cm²) expected at highest luminosity of 10³9 electrons/s-nucleon/cm²
- Large acceptance & small field integral magnet ⇒ Spatial resolution (70 μm)
- Low cost for large tracking system when compared to silicon trackers and high rate compared to Drift chambers

Electromagnetic current density of nucleon:

$$\mathcal{J} = e\bar{N}(p') \left[\gamma^{\mu} F_1(Q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_2(Q^2) \right] N(p)$$

$$G_E = F_1 - \tau F_2$$

$$G_M = F_1 + F_2$$

GEn & GMn: Neutron Form Factor @ high Q²

E12-09-019: measurement of G^{n}_{M}/G^{p}_{M} up to Q²=13.5 GeV² polarized deuterium target. **E12-09-016:** measurement of $G^n \neq G^n_M$ up to Q²=10 GeV² using a polarized ³He target.

GEn-RP: Neutron Form Factor

Q²=4.5 GeV² polarized deuterium target

GEp (5): Proton Form Factor @ high Q²

E12-07-109: measurement of $G^p \not / G^p_M$ up to Q²=12 GeV² using a target of liquid hydrogen

SBS GEM Trackers

- INFN GEM layers: Main trackers in Bigbite and Super Bigbite Spectrometers
 - ⇒ 6 GEM layers, active area of 150 × 40 cm²
 - ⇒ Completed production: 18 modules (+3 spares)
- UVa GEM layers: Polarimeter GEMs of the recoil protons
 - ⇒ 11 layers, active area of 200 × 60 cm²
 - ⇒ Completed production: 44 modules (+ 4 spares)

GEp(5): Super Bigbite Spectrometer – Hadron arm

11 UVa GEM layers

SBS GEM Trackers

- UVa GEM layers on the cosmic stand @ JLab
- Layer#3 Layer#2 Layer#1

- ➤ Production of All GEM modules (INFN and UVa) completed
- ➤ Assembly of 5 INFN layers & 6 UVa layers also completed
- ➤ 2 cosmic stand at JLab for the commissioning of the GEM layers
- ➤ Ongoing study of the detector performances ⇒ Efficiency > 95% for most modules
 - ➤ Modules with lower efficiency ⇒ Increase the HV
- First SBS experiment GMn scheduled to run Spring 2021

Solenoid Intensity Device (SoLID) in Hall A @ JLab

SoLID Physics Overview QCD at the intensity frontier

Full exploitation of JLab 12 GeV Upgrade to maximize scientific return
 A Large Acceptance Detector AND Can Handle High Luminosity (10³⁷-10³⁹)

- SIDIS reaching ultimate precision for tomography of the nucleon (E12-10-006, E12-11-007, E12-11-108)
- PVDIS in high-x region providing sensitivity to new physics at 10-20 TeV (E12-10-007)
- Threshold J/ψ probing strong color fields in the nucleon and the origin of its mass (trace

2015 LRP recommendation IV

 We recommend increasing investment in small-scale and mid-scale projects and initiatives that enable forefront research at universities and laboratories – SoLID – mid-scale project

SoLID Apparatus

Requirements are Challenging

- High Luminosity (10³⁷-10³⁹)
- High data rate
- High background
- Low systematics
- High Radiation
- Large scale (Like RHIC)
- New Technologies
 - GEM's
 - Shashlyk Ecal
 - Pipeline DAQ

Polarized ³He (``neutron") @ SoLID

SoLID GEM Trackers: Scope and Timeline of the project

GEM R&D: Synergy with EIC GEMs

- Six locations instrumented with GEM:
- PVDIS GEM modules can be re-arranged to make all chamber layers for SIDIS. move the PVDIS modules closer to the axis so that they are overlapping with each other

		11 3				
Plane	Z (cm)	R _I (cm)	R _O (cm)	Active area (m²)	# of channels	
1	-175	36	87	2.0	24 k	
2	-150	21	98	2.9	30 k	
3	-119	25	112	3.7	33 k	٠
4	-68	32	135	5.4	28 k	
5	5	42	100	2.6	20 k	
6	92	55	123	3.8	26 k	
total:				~20.4	~ 161 k	

SIDIS

100 do do morn, y	\	y y	
	3	-50-	

Time Line for engineering design and prototyping

	Task	FY21			FY22				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1.1.4	GEM Design and Prototyping								
1.1.4.1	GEM Module design								
1.1.4.1.1	GEM Module component design and prototyping								
1,1,4,1,1,1	GEM Module component design for level 1 prototypes								
1,1,4,1,1,2	GEM Module component procument for level 1 prototypes								
1, 1, 4, 1, 1, 3	GEM Module level 1 prototype fabrication and testing								
1, 1, 4, 1, 1, 4	GEM Module component design for level 2 prototypes								
1, 1, 4, 1, 1, 5	GEM Module component procument for level 2 prototypes								
1, 1, 4, 1, 1, 6	GEM Module level 2 prototype fabrication and testing								
1, 1, 4, 1, 1, 6	GEM Module final engineering design								
1.1.4.1.2	GEM fabrication tooling design and prototyping								
1, 1, 4, 1, 1, 1	GEM fabrication tooling: level 1 design and fabrication								
1, 1, 4, 1, 1, 2	GEM fabrication tooling: level 2 design and fabrication								
1, 1, 4, 1, 1, 3	GEM fabrication tooling: final engineering design								
1.1.4.2	GEM Readout design								
1.1.4.2.1	VMM electronics level 1 prototype design, fabrirication								
1.1.4.2.2	VMM electronics level 1 prototype testing								
1.1.4.2.3	VMM electronics level 2 prototype design, fabrirication								
1.1.4.2.4	VMM electronics level 2 prototype testing								
1.1.4.2.5	VMM electronics final engineering design								
1.1.4.5	GEM mechanical support design								
1.1.4.5.1	GEM mechanical support wheels design								
1.1.4.5.2	GEM mechanical support cable support design								
1.1.4.5.3	GEM mechanical support: 1 sector prototype fabrication								
1.1.4.5.4	GEM mechanical support final engineering design								
1.1.4.6	Transport and travel								
1.1.4.8	Management								

- More than enough electronic channels from PVDIS setup.
- The two configurations will work well with no need for new GEM or electronics fabrication.

 Snowmass 2

Tagged Deep Inelastic Scattering (TDIS) in Hall A @ JLab

Probe mesonic content of the nucleon structure function via the Sullivan process N(e,e'N')X through Tagged Deep Inelastic Scattering (TDIS)

C12-15-006: Measurement of Pion Structure Function

Spokespersons: Cynthia Keppel, Bogdan Wojtsekhowski, Paul King, Dipangkar Dutta, John Annand, Jizie Zhang, Nilanga Liyanage

Spectator Tagging will provide the first measurement of tagged structure functions.

e.g. the Sullivan Process Hydrogen Target **Deuterium Target** charged meson target neutral meson target (undetected) Spectator proton common vertex (backward going Spectator proton slow proton) DIS event - reconstruct x, Q2, W2, also Mx of recoiling hadronic system $F_2^T(x, Q^2, z, t) = \frac{R^T}{\Delta z \Delta t} F_2^p(x, Q^2).$ FIU, February 2016 Mississippi State U. D. Dutta

C12-15-006A: Kaon Structure Function

Spokespersons: Tanja Horn(CUA), Rachel Montgomery(U. of Glasgow), Kijun Park(Jlab)

- measurement of (DIS) cross section off meson cloud,
 while tagging low-momentum recoil spectator proton, to
 measure pion structure function.
- Tag proton and pion from lambda decay to to make the first ever measurement of Kaon structure function.
- Neutron DVCS with proton tagging.

High luminosity ($\mathcal{L} \sim 3 \times 10^{36} \text{ cm}^{-2}/\text{s}$) in Hall A at JLab

TDIS Experimental Setup

Recoil Proton Detector

- H2 or D2 Target: Straw target (12 um Kapton cylinder with 10um Al end cap)
- Proton Detector (mTPC): modular TPC consisting of stack of 10
 sub modules
- Solenoid: 40 cm bore 5T super conductive solenoid magnet (UVa)

Electron Arm: SBS spectrometer

- Tracker: 5 SBS GEM planes
- EM Calorimeter (LAC from CLAS)
- RICH or threshold gas Cherenkov
- PID for trigger level 2: LAC + Cherenkov
- hadron calorimeter (HCAL) for quasi-elastic neutron calibration

MPGDs for Hall B @ JLab

The CLAS12 Experiment in Hall B @ JLab

M. Vandenbroucke, MPGD2105, Trieste 2015

- Upgrade of the CLAS Experiment at Jefferson lab
- Study of the nucleon structure with ~11 GeV electron beam at high luminosity (1035 cm-2s-1)
- Targets: liquid hydrogen (protons), liquid deuterium (neutrons), other nuclei in the future

Micromegas Vertex Tracker (MVT):

- ▶ 4 m² of Micromegas Improve the track reconstruction in the vicinity of the target
- Inserted in the 5T solenoid, in combination with the Silicon Vertex Tracker (SVT)
- Forward Detectors (Disks)
 - ▶ High particle rate (30MHz)
 - Resistive strips divided in 2 zones inner/outer
 - Dimensions: 6x 430 mm diameter disk with a 50 mm diameter hole at the center
- Cylindrical Barrel (Curved Tiles)
 - Low momentum particles => Light Detectors
 - Limited space of ~10 cm for 6 layers

CLAS12 Micromegas Vertex Tracker (MVT)

MVT Forward Tracker:

- ▶ 6 Detectors fully operational with no current on the resistive layer after many cleaning procedures
- 6 Detectors have been delivered to J-Lab in Sept. 2016
- Radiation length of 0.70% X/X0 => To be lowered for the next run
- Close to full efficiency (98%) in the active area
- Resolution better than 200 µm (limited by tracking of the test-bench)
- Time Resolution better than 20 ns (same)

CLAS12 Micromegas Vertex Tracker (MVT)

MVT Barrel Tracker:

- ▶ 6 Layers of cylindrical detectors divided in 120° sectors = 18 Micromegas tiles
- Bulk + Resistive Micromegas
- Less than 0.5% of a radiation length per layer
- Cylindricity measured to be precise up to ~2mm in radius
- ► Resolution better than 200µm per layer with cosmic rays
- ► Time resolution of ~25ns with cosmic rays

CR5-Z

CR6-Z

3 + 1spare

3 + 1spare

Proton Radius Puzzle

サイエンス

B MUDE HAYKU

ПРОТО

CIENCIA

problema del protón

Two techniques for proton charge radius measurement

- E-p elastic scattering
- Spectroscopy

• Combined CODATA average: 0.8751 ± 0.00061 fm

ep scattering average (CODATA): 0.879 ± 0.011 fm

H-spectroscopy average (CODATA): 0.859 ± 0.0077 fm

• Muon spectroscopy: $0.8409 \pm 0.0004 \text{ fm (CREMA 2010, 2013)}$

H spectroscopy (2017): 0.8335 ± 0.0095 fm (A. Beyer et al. Science 358 6359 (2017))

H spectroscopy (2018): 0.877 ± 0.013 fm (H. Fleurbaey et al. PRL 120 183001 (2018))

PRad Experimental in Hall B @ JLab (June 2016)

Target specs:

- cell length 4.0 cm
- cell diameter 8.0 mm
- cell material 30 µm Kapton
- input gas temp. 25 K
- target thickness 1x10¹⁸ H/cm
- average density 2.5x10¹⁷
 H/cm³
- Cell pressure 0.6 torr
- Vacuum in target chamber ~5x10⁻³ torr

PRad is a Electron Scattering Experiment that ran at JLab in Summer 2016 high precision measurement of the proton charge radius

- factor of >10 improvements in coordinate resolutions
- similar improvements in Q2 resolution (very important)
- unbiased coordinate reconstruction (including transition region)
- increase Q2 range by including Pb-glass part

Hydrogen

- 34 x 34 matrix of 2.05 x 2.05 x 18 cm³ PbWO4 shower detectors
- 576 Pb-glass shower detectors (3.82x3.82x45.0 cm³)
- 5.5 m from H₂ target (~0.5 sr acceptance)
- Resolutions for PbWO4 shower: $\sigma/E = 2.6 \%/\sqrt{E}$, $\sigma_{xy} = 2.5 \text{ mm/}\sqrt{E}$
- Resolution for Pb-glass shower detectors factor of ~2.5 worse

PRad GEM Trackers

- GEM detection efficiency measured in both photon beam calibration (pair production) and production runs (ep and ee)
- Using overlap region of GEMs to measure position resolution (72 μ m)

PRad GEMs was in 2016 the largest GEM to successfully run in an HEP/NP experiment

 $R_p = 0.831 \pm 0.007 \; (stat.) \pm 0.012 \; (syst.) \; fm$

W. Xiong et al., Nature, 575, 147 (2019)

BoNuS: GEM based Radial TPC (rTPC) in Hall B @ JLab

dE/dx from charge track

E. Christy. Tagged SF, JLAB 2014

MPGDs for Future Applications @ JLab

- Test beam campaign during JLab spring, fall run 2018 and spring Run 2019
- Tests carried out with GEM-TRD and FDC-TRD (Forward Drift Chambers)
- 3 to 6 GeV electrons are produced in the converter of a pair spectrometer
- No pion beam for direct comparison of the TR effect for JLab beam tests
- The radiators and covers about half of the sensitive area of the GEM-TRD
- Analysis is done by comparing the energy deposited in the drift volume covered with and without radiator

GEM-TRD setup @ JLab Hall D

Recent MPGD: The Resistive Micro Well detector (µRWell)

The µRWELL is realized by coupling:

- 1. a "suitable WELL patterned Kapton foil as "amplification stage"
- 2. a "resistive stage" for discharge suppression & current evacuation:
- 3. a standard readout PCB

Combines the advantages of both GEMs & Micromegas

- Single amplification stage, thin structure, low material
- Like GEM ⇒ Simple amplification stage ⇒ it is similar to a GEM foil
- no stretching, no spacers ⇒ almost full efficiency
- Low material ⇒ minimize multiple scattering
- Low cost MPGD detector & Large area capability

Drift/cathode PCB Copper top layer (5μm) Well pitch: 140 μm Well diameter: 70-50 μm Kapton thickness: 50 μm DLC layer (0.1-0.2 μm) R~50 -100 ΜΩ/□ Rigid PCB readout electrode

μ-RWELL PCB

G. Bencivenni et al., 2015 JINST 10 P02008

µRWELL with X-Y readout

Cross section of µRWELL with X-Y readout

uRWELL position residuals from track fit with GEMs @FNAL

Large Area µRWELL: Replacing GEM for PRad-II & DRAD in Hall B

Two new proposals PRad-II & DRAD in Hall B @JLab

- ❖ PRad-II ⇒ Push the precision measurement one order of magnitude better than the original PRad
- DRad: Deuteron radius puzzle similar effect with uH spectroscopy measurement

PRad-II Experimental Setup (Side View)

Why the choice of µRWELL instead of GEM

- ❖ Two large uRWELL layers (1m x 1.2 m)
- Low cost detector technology
- ❖ Simple uRWELL configuration
- Same experimental setup for PRad-II and DRad
- ❖ No spacer in the active area

Large µRWELL: Forward Detector Upgrade for High-Lumi CLAS12

Why the choice of µRWELL over existing Drift Chamber

- ❖ Can handle the high rate of the CLAS12 upgrade
- Low cost detector technology
- ❖ Simple uRWELL configuration even for CLAS12 High Luminosity
- ❖ Detector construction simpler than GEM & Micromegas
- U-V strip readout to provide high resolution 2D space points
 - Ongoing R&D to reduce channel counts low while keeping same spatial resolution performances

Cylindrical µRWELL: Upgrade of GLUeX Barrel Tracker in Hall D

μRWELL: possible candidate to replace / supplement GLUeX Central Drift Chamber (Straw tube)

- Cylindrical & large area (radius) tracking layers
- Low mass & low cost detector technology
- ❖ Simple uRWELL configuration even for CLAS12 High Luminosity
- ❖ Cylindrical **uRWELL** way simpler than GEM & Micromegas
- Ongoing R&D to reduce channel counts low while keeping same spatial resolution performances
- Synergy with ongoing R&D on EIC fast cylindrical tracker (Matt's talk)

Summary

MPGDs @ JLab is becoming more and more mainstream technologies for tracking system at JLab

- ❖ High luminosity experiment in Hall A require large area GEM detector (SBS, SoLID, MOLLER & TDIS)
- Lower luminosity in Hall B favorable for resistive Micromegas Cylindrical Vertex Trackers
- New MPGD technologies for detector upgrade for CEBAF high luminosity 12 GeV era
- Development of GEM based Transition Radiation Detector: Application for e ID in Hall D

Backup

TDIS multi-TPC (mTPC)

Proton Arm

- H2 or D2 Target: Straw target (12 um Kapton cylinder with 10um Al end cap)
- Proton Detector (mTPC) : modular TPC consisting of stack of 10 sub modules
- Solenoid: 40 cm bore 5T super conductive solenoid magnet (UVa)

GEM foil design: divided into 6 to 12 HV sectors on bot top and bottom electrodes

Pad readout foil design

- 20 concentric rings of 126 pads each
- Trapezoidal-shape pads with height of 5cm
- width from 2.625 mm in inner ring to 7.325 mm in the outer ring
- · higher occupancy in the inner region of the TPC

SAMPA Readout Electronics for TDIS mTPC

- Direct ADC serialization (DAS) mode → bypass digital signal processor (DSP)
 - ALICE FEC design limits ADC rate to 5 MHz in DAS mode → 10 e-links (max 3.2 Gb/s)
- DSP mode → pedestal subtraction, baseline corrections, zero-suppression, compression
- Sampling rates of 10 or 20 MHz → 11 e-links (max 3.2 Gb/s or 6.4 Gb/s)

SBS GEM Trackers

UVa GEM layers on the cosmic stand

- Production of All GEM modules (INFN and UVa) completed
- Assembly of 5 INFN layers & 6 UVa layers also completed
- 2 cosmic stand at JLab for the commissioning of the GEM layers
- ➤ Ongoing study of the detector performances ⇒ Efficiency > 95% for most modules
 - ➤ Modules with lower efficiency ⇒ Increase the HV
- First SBS experiment GMn scheduled to run Spring 2021

UVa GEM layers: Efficiency map for 4 layers

