New Paths to B (and L) Violation by Two Units and Their Implications

Susan Gardner

Department of Physics and Astronomy University of Kentucky Lexington, KY

More Exotic B and L Violating Processes (with Julian Heeck) Subgroup of RF04

BLV circa 2020 (Virtually) Case Western Reserve University July 7, 2020

More Exotic B and L Violating Processes We'll consider what wasn't discussed yesterday!

- I'll talk about breaking B and/or L by two (or more) units
- Julian Heeck's talk will include $|\Delta B| = 1$

```
processes....
```

There are really very many possibilities, and several reach across subfield boundaries. E.g., could the p be stable but the H-atom not? [McKeen & Pospelov, 2003.02270] What of H-H oscillations? [Feinberg & Weinberg, 1961; Grossman, Ng, Ray, 2018] I hope to review all (most?) of them, but first I think I should tell you why....

Perspective Experiment & observation reveal non-zero v masses, a cosmic BAU, dark matter, dark energy.

Although B violation appears in the SM (sphalerons), [Kuzmin, Rubakov, & Shaposhnikov, 1985] we know nothing of its pattern at accessible energies.

B and L violation could well play a role in solving all of these puzzles?

Experimental limits on $|\Delta B| = 1$ processes are severe; $|\Delta B| = 2$ processes can be of distinct origin & important. [Marshak and Mohapatra, 1980; Babu & Mohapatra, 2001 & 2012; Arnold, Fornal, & Wise, 2013]

Perspective, Part II

 $|\Delta B|=2$ &/or $|\Delta L|=2$ interactions (w/ B-L violation) speak to fundamental Majorana dynamics

Both (and much more!) appear in a SO(10) GUT, e.g., but can they be connected with minimal ingredients?

[Arnold, Fornal, & Wise, 2013; Assad, Fornal, & Grinstein, 2018; SG & Yan, 2019]

Are there new ways of showing that a "Majorana V" must exist?

[cf. Babu & Mohapatra, 2015 (plus N decay); SG & Yan, 2019]

This is distinct from finding an Majorana neutrino mass of observable size.

What role does flavor play?

Can dark matter can induce B and/or L violation?

A List of Possibilities

In addition to $n - \bar{n}$ oscillations, we could consider...

 $\Lambda - \bar{\Lambda}$ oscillations (or other flavorful transitions) NN decays to various final (dark?) states scattering-mediated N \bar{N} transitions and/or

spin-dependent or CP-violating effects therein collider searches for $|\Delta B| = |\Delta L| = 3$ processes

In addition to 0ν $\beta\beta$ decay we could consider...

the role of light particle emission therein $|\Delta L| = (\text{or } >) 2$ processes also with μ or τ final states muonium-antimuonium oscillations (a 2-fer!)

n – n Oscillations, Dark Sectors, & CPViolation [McKeen & Nelson, 2016]

$$H = \begin{pmatrix} m_n - \frac{i}{2}\Gamma_n & M_{12} - \frac{i}{2}\Gamma_{12} \\ M_{12}^* - \frac{i}{2}\Gamma_{12}^* & m_n - \frac{i}{2}\Gamma_n \end{pmatrix}$$

Appearance of CP violation requires nonzero $\text{Im}M_{12}\Gamma_{12}^*$

$0\nu \beta\beta$ Decay in Nuclei

Can be mediated by "short-" or "long"-range mechanisms The "short-range" mechanism involves new B-L violating dynamics; e.g.,

S or V that carries B or L

For choices of fermions f_i this decay topology can yield $n-\overline{n}$ or 0ν $\beta\beta$ decay

[Bonnet, Hirsch, Ota, & Winter, 2013]

Can we relate the possibilities in a data-driven way? [Yes!] [S.G. & Xinshuai Yan, PLB 2019]

Nucleon-Antinucleon Transitions Can be realized in different ways

Enter searches for

• neutron-antineutron oscillations (free n's & in nuclei)

"spontaneous" & thus sensitive to environment

$$\mathcal{M} = \begin{pmatrix} M_n - \mu_n B & \delta \\ \delta & M_n + \mu_n B \end{pmatrix}$$

$$P_{n \to \bar{n}}(t) \simeq \frac{\delta^2}{2(\mu_n B)^2} \left[1 - \cos(2\mu_n B t)\right]$$

- dinucleon decay (in nuclei)
 (limited by finite nuclear density)
- nucleon-antinucleon conversion (mediated by external interactions) [SG & Xinshuai Yan, 2017]

9

(B-L need not be broken)

$n - \bar{n} \& Nuclear Stability$

n- \bar{n} oscillations can be studied in bound or free systems.

New limits on dinucleon decay in nuclei have also recently been established.

[Gustafson et al., Super-K Collaboration, arXiv:1504.0104.] ${}^{16}O(pp) \rightarrow {}^{14}C \pi^{+}\pi^{+} has \tau > 7.22 \times 10^{31} \text{ years at 90\% CL.}$ ${}^{16}O(pn) \rightarrow {}^{14}N \pi^{+}\pi^{0} has \tau > 1.70 \times 10^{32} \text{ years at 90\% CL.}$ ${}^{16}O(nn) \rightarrow {}^{14}O \pi^{0}\pi^{0} has \tau > 4.04 \times 10^{32} \text{ years at 90\% CL.}$ Note $\tau_{NN} = T_{nuc}\tau_{n\bar{n}}^{2}$ with $T_{nuc} \sim 1.1 \times 10^{25} \text{s}^{-1}$

Large suppression factors appear in all such nuclear studies, making free searches more effective. (at first glance) In the case of bound $n-\bar{n}$ the suppression is set by

$$\frac{\delta^2}{(V_n - V_{\bar{n}})^2}$$

the difference in nuclear optical potentials. [Dover, Gal, and Richard; Friedman and Gal, 2008] Now ${}^{16}O(n-\bar{n})$ has $\tau > 1.9 \times 10^{32}$ years at 90% CL, yielding $\tau_{n\bar{n}} > 2.7 \times 10^8$ s. [Abe et al., Super-K Collaboration, arXiv:1109.4227.] Cf. free limit: $\tau_{n\bar{n}} \ge 0.85 \times 10^8$ s at 90% C.L. [Baldo-Ceolin et al., ZPC, 1994 (ILL)] with future improvements expected. The nuclear suppression dwarfs that from magnetic fields. Note recent EFT computations in d.

n - n Transitions & Spin Spin can play a role in a "mediated" process

A neutron-antineutron **oscillation** is a spontaneous process & thus the spin does not ever flip **However**,

 $\mathcal{O}_{4} = \psi^{T} \mathcal{C} \gamma^{\mu} \gamma_{5} \psi \, \partial^{\nu} \mathcal{F}_{\mu\nu} + \text{h.c.}$

 $n(+) \rightarrow \bar{n}(-)$ occurs directly because the interaction with the current flips the spin.

This is concomitant with $n(p_1, s_1) + n(p_2, s_2) \rightarrow \gamma^*(k)$, for which only L = 1and S = 1 is allowed via angular momentum conservation and Fermi statistics. [Berezhiani and Vainshtein, 2015]

Here $e + n \rightarrow \overline{n} + e$, e.g., so that the experimental concept for " $n\overline{n}$ conversion" would be completely different.

Neutron-Antineutron Conversion Different mechanisms are possible

- * n-n conversion and oscillation could share the same "TeV" scale BSM sources
 - Then the quark-level conversion operators can be derived noting the quarks carry electric charge
- * n-n conversion and oscillation could come from different BSM sources
 - → Indeed different $|\Delta B|=2$ processes could appear (e.g., e⁻ p → e⁺ \overline{p})

NN conversion

Neutron-Antineutron Oscillation
Quark-level operators[Rao & Shrock, 1982]Quark-level operators
$$(\mathcal{O}_1)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{T\alpha}Cu_{\chi_1}^{\beta}][d_{\chi_2}^{T\gamma}Cd_{\chi_2}^{\delta}][d_{\chi_3}^{T\rho}Cd_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma},$$
 $(\mathcal{O}_2)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{T\alpha}Cd_{\chi_1}^{\beta}][u_{\chi_2}^{T\gamma}Cd_{\chi_2}^{\delta}][d_{\chi_3}^{T\rho}Cd_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma},$ $(T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\gamma}\epsilon_{\sigma\beta\delta} + \epsilon_{\sigma\alpha\gamma}\epsilon_{\rho\beta\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\sigma\alpha\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\rho\alpha\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\gamma\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\alpha\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\alpha\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\gamma\delta},$ $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\alpha\beta}\epsilon_{\alpha\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\gamma\delta},$ $(T_a)_{\alpha\beta\gamma} = \epsilon_{\alpha\beta}\epsilon_{\alpha\gamma\delta} + \epsilon_{\alpha\beta}\epsilon_{\alpha\beta},$ $(T_a)_{\alpha\beta\gamma} = \epsilon_{\alpha\beta}\epsilon_{\alpha\gamma},$ $(T_a)_{\alpha\beta\gamma} = \epsilon_{\alpha\beta}\epsilon_{\alpha\gamma},$

B-L Violation via e-n scattering Linking neutron-antineutron oscillation to conversion

B-L Violation via e-n scattering Linking neutron-antineutron oscillation to conversion

[SG & Xinshuai Yan, arXiv:1710.09292, PRD 2018]

TABLE I. Dimensionless matrix elements $(I_i)_{\chi_1\chi_2\chi_3}^{\chi_3}$ of $n - \bar{n}$ conversion operators. The column "EM" denotes the matrixelement combination of $(\chi = R) - (\chi = L)$.

	I_1				I_2					I_3	
$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM	$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM	$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM
RRR	19.8	19.8	0	RRR	-4.95	-4.95	0	RRR	1.80	-8.28	10.1
RRL	17.3	17.3	0	RRL	-2.00	-9.02	7.02	RRL	-1.07	-8.81	7.74
RLR	17.3	17.3	0	RLR	-4.09	-0.586	-3.50	RLR	7.20	6.03	1.17
RLL	6.02	6.02	0	RLL	-0.586	-4.09	3.50	RLL	6.03	7.20	-1.17
LRR	6.02	6.02	0	LRR	-4.09	-0.586	-3.50	LRR	7.20	6.03	1.17
LRL	17.3	17.3	0	LRL	-0.586	-4.09	3.50	LRL	6.03	7.20	-1.17
LLR	17.3	17.3	0	LLR	-9.02	-2.00	-7.02	LLR	-8.81	-1.07	-7.74
LLL	19.8	19.8	0	LLL	-4.95	-4.95	0	LLL	-8.28	1.80	-10.1

Electromagnetic scattering yields n- \overline{n} conversion from O₂ and O₃ operators only! Interactions impact view on n- \overline{n} osc. even in q² \rightarrow 0 limit; (cf. K_S regeneration in matter); cf. Nesvizhevsky et al 2018.... Neutron-Antineutron Conversion Different mechanisms are possible

- n-n conversion and oscillation could share the same "TeV" scale BSM sources
 Then the quark-level conversion operators can be derived noting the quarks carry electric charge
- n-n conversion and oscillation could come from different BSM sources
 - Here we consider nucleon-antinucleon conversion

Now we turn to minimal scalar models.

Models with $|\Delta B|=2$ Processes Enter minimal scalar models without proton decay

Already used for $n \rightarrow \bar{n}$ oscillation without p decay [Arnold, Fornal, Wise, PRD, 2013]

Note limits on $|\Delta B|=1$ processes are severe! E.g., $\tau(N \rightarrow e^+\pi) = 8.2 \times 10^{33}$ yr [p] @ 90% CL

Add new scalars X_i without N decay at tree level

Also choose X_i that respect SM gauge symmetry and also under interactions $X_iX_jX_k$ or $X_iX_jX_kX_l$, **etc.** — cf. "hidden portal" searches: possible parameters (masses, couplings) are limited by experiment

Scalars without Proton Decay That also carry B or L charge $Q_{em} = T_3 + Y$ Scalar-fermion couplings

	Scalar	SM Representation	В	L	Operator(s)	$[g_i^{ab}?]$
	$\overline{X_1}$	(1, 1, 2)	0	-2	$Xe^{a}e^{b}$	[S]
	X_2	(1,1,1)	0	-2	XL^aL^b	[A]
	X_3	(1,3,1)	0	-2	XL^aL^b	[S]
Nloto	X_4	$(\bar{6}, 3, -1/3)$	-2/3	0	XQ^aQ^b	[S]
	X_5	$(\bar{6}, 1, -1/3)$	-2/3	0	XQ^aQ^b, Xu^ad^b	[A,-]
SU(3)	X_6	(3, 1, 2/3)	-2/3	0	Xd^ad^b	$[\mathbf{A}]$
rep'ns	X_7	$(\bar{6}, 1, 2/3)$	-2/3	0	Xd^ad^b	[S]
-	X_8	$(\bar{6}, 1, -4/3)$	-2/3	0	Xu^au^b	[S]
	X_9	(3, 2, 7/6)	1/3	-1	$X\bar{Q}^a e^b, XL^a \bar{u}^b$	[-,-]

Note powerful reduction of # of "short distance" mechanisms in $0\nu\beta\beta$ decay [X.Yan (DBD 2018) & SG]

[?: a↔b symmetry]

Phenomenology of New Scalars Constraints from many sources — Focus on first generation

- i) **N-**<u></u>**n**
- ii) Collider constraints
- CMS: I+I+ search; cannot look at invariant masses
- below 8 GeV ATLAS: dijet studies "weaker"...
- iii) P.V. Møller scattering Few GeV mass window possible $M_{X1,3}/g_{1,3}^{11} < 2.7 \text{ TeV} @ 90\% \text{CL} [E158] (if "heavy")$
- iv)(g-2)_e (superseded by Møller, save for light masses)
 - Light mass solution to Δa_e puzzle?
- v) Nuclear stability [S.G. & Xinshuai Yan, 1907.12571] SuperK: $pp \rightarrow e+e+$
- vi) HH annihilation Beware galactic magnetic fields!

A Sample Model

$$\mathcal{L}_{10} \supset -g_1^{ab} X_1(e^a e^b) - g_7^{ab} X_7^{\alpha\beta} (d^a_{\alpha} d^b_{\beta}) - g_8^{ab} X_8^{\alpha\beta} (u^a_{\alpha} u^b_{\beta}) -\lambda_{10} X_7^{\alpha\alpha'} X_8^{\beta\beta'} X_8^{\gamma\gamma'} X_1 \epsilon_{\alpha\beta\gamma} \epsilon_{\alpha'\beta'\gamma'} + \text{H.c.}$$

Each term has mass dimension ≤ 4

But can generate a mass-dimension 12 operator at low energies to realize $e^{-}p \rightarrow e^{+}\overline{p}$

There are several possible models.

Patterns of IΔBI=2 Violation?Note possible SM gauge invariant scalar models[H.c. implied.][SG & Xinshuai Yan, arXiv: 1808.05288]

Model		Model		Model			
M1	$X_5 X_5 X_7$	А	$X_1 X_8 X_7^{\dagger}$	M10	$X_7 X_8 X_8 X_1$		
M2	$X_4 X_4 X_7$	В	$X_3 X_4 X_7^{\dagger}$	M11	$X_5 X_5 X_4 X_3$		
M3	$X_7 X_7 X_8$	\mathbf{C}	$X_3 X_8 X_4^{\dagger}$	M12	$X_5 X_5 X_8 X_1$		
M4	$X_6 X_6 X_8$	D	$X_5 X_2 X_7^{\dagger}$	M13	$X_4 X_4 X_5 X_2$		
M5	$X_5 X_5 X_5 X_2$	\mathbf{E}	$X_8 X_2 X_5^{\dagger}$	M14	$X_4 X_4 X_5 X_3$	"4 X"	models
M6	$X_4 X_4 X_4 X_2$	\mathbf{F}	$X_2 X_2 X_1^{\dagger}$	M15	$X_4 X_4 X_8 X_1$	can	vield
M7	$X_4 X_4 X_4 X_3$	G	$X_3 X_3 X_1^{\dagger}$	M16	$X_4 X_7 X_8 X_3$	Carr	
M8	$X_7 X_7 X_7 X_1^{\dagger}$			M17	$X_5 X_7 X_7 X_2^{\dagger}$	е-р-	→e⁺ p̄
M9	$X_6 X_6 X_6 X_1^{\dagger}$			M18	$X_4 X_7 X_7 X_3^{\dagger}$,
						е-р-	→V n

n-π π-π-→e-e-

[Models with $|\Delta L|=2$ always involve 3 different scalars.]

Patterns of IABI=2 Violation? Note possible BNV processes

[SG & Xinshuai Yan, arXiv: 1808.05288]

TABLE III. Suite of $|\Delta B| = 2$ and $|\Delta L| = 2$ processes generated by the models of Table II, focusing on states with first-generation matter. The (*) superscript indicates that a weak isospin triplet of $|\Delta L| = 2$ processes can appear, namely $\pi^0 \pi^0 \to \nu \nu$ and $\pi^- \pi^0 \to e^- \nu$. Models M7, M11, M14, and M16 also support $\nu n \to \bar{n}\bar{\nu}$, revealing that cosmic ray neutrinos could potentially mediate a $|\Delta B| = 2$ effect.

$n \bar{n}$	$\pi^-\pi^- ightarrow e^-e^-$	$e^- p \to \bar{\nu}_{\mu,\tau} \bar{n}$	$e^-p ightarrow \bar{\nu}_e \bar{n}/e^+ \bar{p}$	$e^-p \to e^+ \bar{p}$
M1	А	M5	M7	M10
M2	$\mathrm{B}^{(*)}$	M6	M11	M12
M3	$\mathrm{C}^{(*)}$	M13	M14	M15
			M16	

Use observations of $n\bar{n}$ oscillation or NN conversion (e⁻ p \rightarrow e⁺ \bar{p} , ...) to establish new scalars... & w/ both can predict the existence of π - π - \rightarrow e-e-!

Connecting $|\Delta B| = 2$ to $|\Delta L| = 2$...

"M3" (a)

n-n "Oscillation"

 $e^- p \rightarrow e^+ \overline{p}$ "Conversion"

Connecting $|\Delta B| = 2$ to $|\Delta L| = 2...$

Patterns of $|\Delta B| = 2$ Violation Discovery implications for $0v \beta\beta$ decay

S.G. & Xinshuai Yan, PRD 2018 [arXiv:1710.09292]

Model	$n\bar{n}?$	$e^-n \rightarrow e^-\bar{n}?$	$e^- p \to \bar{\nu}_X \bar{n}?$	$e^- p \to e^+ \bar{p}?$	0 uetaeta ?
M3	Y	Ν	Ν	Υ	Y [A]
M2	Y	Υ	Y	Υ	Y[B]
M1	Y	Υ	Y	Ν	? [D]
	Ν	Ν	Y	Y	? [C?]

Patterns of observation can distinguish the possibilities.

26

Note high-intensity, low-energy e-scattering facilities (P2, e.g.) can be used to broader purpose

[SG & Xinshuai Yan, arXiv: 1808.05288]

Low-Energy Electron Facilities Note illustrative parameter choices

[Hydrogen]

	Facility	Be	am	Γ	Luminosity	
	raciity	Energy(MeV)	Current (mA)	Length (cm)	Density (g/cm^3)	(cm^{-2})
	CBETA $[14]$	150	40	60	0.55×10^{-6}	2.48×10^{36}
	MESA $[15]$	100	10	60	0.55×10^{-6}	6.21×10^{35}
	A RIEL [16]	50	10	100	0.09×10^{-3}	1.69×10^{38}
X		50	10	* 0.2	71.3×10^{-3}	2.68×10^{38}
م الم	FAST [17]	150	28.8	100	0.09×10^{-3}	4.88×10^{38}
		100	20.0	* 0.1	71.3×10^{-3}	3.87×10^{38}

= proposed, ERL (internal target)

💫 = ERL (e.g.)

*

- 💥 = Linac (external target)
- = Linac, ILC test accelerator

*Liquid

Event Rates Select particular scalar masses/couplings for reference $\lambda_i = 1$ M_{Xi}/gi^{1/2}=30 GeV for i=1,2,3 else IGeV

Rates in #/yr

 $e^- p \rightarrow e^+ p$:

Facility	M7	M10	M11	M12	M14	M15	M16
CBETA [18]	1.12	0.18	0.01	0.00	0	2.24	0.45
MESA [19]	0.28	0.05	0.00	0.00	0	0.56	0.11
ARIEL [20]	76.41	12.59	0.41	0.20	0	152.69	30.68
	121.06	19.95	0.65	0.31	0	241.93	48.62
FAST [21]	220.05	36.27	1.18	0.56	0	439.75	88.37
	174.33	28.73	0.93	0.45	0	348.38	70.00

 $e^{-} p \rightarrow v_{e} \overline{n}$

Facility	M5	M6	M7	M11	M13	M14	M16
CBETA [18]	0.00	0	0.08	0.00	0.14	0	0.02
MESA [19]	0.00	0	0.02	0.00	0.03	0	0.01
ARIEL [20]	0.03	0	5.17	0.24	9.45	0	1.59
	0.04	0	8.19	0.38	14.97	0	2.51
FAST [91]	0.08	0	14.88	0.70	27.20	0	4.57
	0.06	0	11.79	0.55	21.55	0	3.62

²⁸ [S.G. & Xinshuai Yan, in preparation]

Summary

- The discovery of B-L violation would reveal the existence of dynamics beyond the Standard Model. There are several interesting experiments, that complement $n \bar{n}$ oscillation and 0v $\beta\beta$ decay searches.
- Minimal scalar models can relate $|\Delta B|=2$ to $|\Delta L|=2$ processes [i.e., via the "short range" mechanism of $0v\beta\beta$ decay]
- We have noted nucleon-antinucleon conversion processes, i.e., scattering-mediated nucleon-antinucleon processes, in addition to neutron-antineutron oscillations, to establish an effective Majorana v
- Such a connection does not establish the observed scale of the neutrino mass, nor the mechanism of 0vββ decay; thus direct empirical studies continue to be essential
- Experiments with intense low-energy electron beams, e.g., complement essential neutron studies to help solve the v mass puzzle

Backup Slides

Fundamental Majorana Dynamics Can exist for electrically neutral massive fermions: either leptons (v's) or combinations of quarks (n's)

Lorentz invariance allows

$$\mathcal{L} = \bar{\psi} i \partial \!\!\!/ \psi - \frac{1}{2} m (\psi^T C \psi + \bar{\psi} C \bar{\psi}^T)$$

[Majorana, 1937]

where m is the Majorana mass.

N.B. a "Majorana neutron" is an entangled n and \overline{n} state

Based on work in collaboration with Xinshuai Yan (U. Kentucky→CCNU)

Bibliography:

S.G. & Xinshuai Yan (U. Kentucky), Phys. Rev. D93, 096008 (2016) [arXiv:1602.00693]; S.G. & Xinshuai Yan, Phys. Rev. D97, 056008 (2018) [arXiv:1710.09292]; S.G. & Xinshuai Yan, Phys. Lett. B790 (2019) 421 [arXiv:1808.05288]; and on ongoing work in collaboration with Xinshuai Yan

Neutron-Antineutron Oscillation
[Rao & Shrock, 1982]

$$(\mathcal{O}_1)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{T\alpha}Cu_{\chi_1}^{\beta}][d_{\chi_2}^{T\gamma}Cd_{\chi_2}^{\delta}][d_{\chi_3}^{T\rho}Cd_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma},$$

 $(\mathcal{O}_2)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{T\alpha}Cd_{\chi_1}^{\beta}][u_{\chi_2}^{T\gamma}Cd_{\chi_2}^{\delta}][d_{\chi_3}^{T\rho}Cd_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma},$
 $(T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\gamma}\epsilon_{\sigma\beta\delta} + \epsilon_{\sigma\alpha\gamma}\epsilon_{\rho\beta\delta} + \epsilon_{\rho\beta\gamma}\epsilon_{\sigma\alpha\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\rho\alpha\delta},$
 $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta}$
Note
 $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta},$
Colly 14 of 24 operators are independent
 $(\mathcal{O}_1)_{\chi_1LR} = (\mathcal{O}_1)_{\chi_1RL}, \quad (\mathcal{O}_{2,3})_{LR\chi_3} = (\mathcal{O}_{2,3})_{RL\chi_3},$
 $(\mathcal{O}_2)_{mmn} - (\mathcal{O}_1)_{mmn} = 3(\mathcal{O}_3)_{mmn}$ [Caswell, Milutinovic, & Senjanovic, 1983]
Colly 4 appear in SM effective theory

From Oscillation to Conversion Quark-level operators: compute $q^{\rho}(p) + \gamma(k) \rightarrow \overline{q}^{\delta}(p')$ flavor $\mathcal{H}_{I} \supset \frac{\delta_{q}}{2} \sum_{\gamma_{1}} (\psi_{\chi_{1}}^{\rho T} C \psi_{\chi_{1}}^{\delta} + \bar{\psi}_{\chi_{1}}^{\delta} C \bar{\psi}_{\chi_{1}}^{\rho T}) + Q_{\rho} e \sum_{\chi_{2}} \bar{\psi}_{\chi_{2}}^{\rho} \mathcal{A} \psi_{\chi_{2}}^{\rho}$ matrix element: $\langle \bar{q}^{\delta}(p') | \mathcal{T}\left(\sum_{\alpha} \left(-i\frac{\delta_q}{2}\int d^4x \psi_{\chi_1}^{\rho T} C \psi_{\chi_1}^{\delta}\right)\right)$ $\times \left(-iQ_{\rho}e\int d^{4}y\bar{\psi}_{\chi_{2}}^{\rho}A\psi_{\chi_{2}}^{\rho}-iQ_{\delta}e\int d^{4}y\bar{\psi}_{\chi_{2}}^{\delta}A\psi_{\chi_{2}}^{\delta}\right)\right)$ $rac{1}{2}$ if δ=ρ $\times |q^{\rho}(p)\gamma(k)\rangle,$ **Effective vertex**

B-L Violation via e-n scattering Linking neutron-antineutron oscillation to conversion

B-L Violation via e-n scattering Linking neutron-antineutron oscillation to conversion Moreover...

$$\begin{split} (\tilde{\mathcal{O}}_{1})_{\chi_{1}\chi_{2}\chi_{3}}^{\chi\mu} &= \left[\begin{array}{c} -2[u_{-\chi}^{\alpha\,T}C\gamma^{\mu}\gamma_{5}u_{\chi}^{\beta} + u_{\chi}^{\alpha\,T}C\gamma^{\mu}\gamma_{5}u_{-\chi}^{\beta}][d_{\chi_{2}}^{\gamma\,T}Cd_{\chi_{2}}^{\delta}][d_{\chi_{3}}^{\rho\,T}Cd_{\chi_{3}}^{\sigma}] \\ + & \left[u_{\chi_{1}}^{\alpha\,T}Cu_{\chi_{1}}^{\beta}\right][d_{-\chi}^{\gamma\,T}C\gamma^{\mu}\gamma_{5}d_{\chi}^{\delta} + d_{\chi}^{\gamma\,T}C\gamma^{\mu}\gamma_{5}d_{-\chi}^{\delta}][d_{\chi_{3}}^{\rho\,T}Cd_{\chi_{3}}^{\sigma}] \\ + & \left[u_{\chi_{1}}^{\alpha\,T}Cu_{\chi_{1}}^{\beta}\right][d_{\chi_{2}}^{\gamma\,T}Cd_{\chi_{2}}^{\delta}][d_{-\chi}^{\rho\,T}C\gamma^{\mu}\gamma_{5}d_{\chi}^{\sigma} + d_{\chi}^{\rho\,T}C\gamma^{\mu}\gamma_{5}d_{-\chi}^{\sigma}] \right] (T_{s})_{\alpha\beta\gamma\delta\rho\sigma} \end{split}$$

yielding [Here χ =R - χ =L for em scattering] $(\tilde{\mathcal{O}}_1)_{\chi_1\chi_2\chi_3}^{\chi} = (\delta_1)_{\chi_1\chi_2\chi_3} \frac{em}{3(p_{\text{eff}}^2 - m^2)} \frac{Qej_{\mu}}{q^2} (\tilde{\mathcal{O}}_1)_{\chi_1\chi_2\chi_3}^{\chi\mu},$

(best connection to oscillation as $q^2 \rightarrow 0$)

with similar relationships for i=2,3 [only these in em case] The hadronic matrix elements are computed in the MIT bag model.

B-L Violation via e-n scattering Linking neutron-antineutron oscillation to conversion

[SG & Xinshuai Yan, arXiv:1710.09292, PRD 2018]

TABLE I. Dimensionless matrix elements $(I_i)_{\chi_1\chi_2\chi_3}^{\chi_3}$ of $n - \bar{n}$ conversion operators. The column "EM" denotes the matrixelement combination of $(\chi = R) - (\chi = L)$.

	I_1				I_2					I_3	
$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM	$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM	$\chi_1\chi_2\chi_3$	$\chi = R$	$\chi = L$	EM
RRR	19.8	19.8	0	RRR	-4.95	-4.95	0	RRR	1.80	-8.28	10.1
RRL	17.3	17.3	0	RRL	-2.00	-9.02	7.02	RRL	-1.07	-8.81	7.74
RLR	17.3	17.3	0	RLR	-4.09	-0.586	-3.50	RLR	7.20	6.03	1.17
RLL	6.02	6.02	0	RLL	-0.586	-4.09	3.50	RLL	6.03	7.20	-1.17
LRR	6.02	6.02	0	LRR	-4.09	-0.586	-3.50	LRR	7.20	6.03	1.17
LRL	17.3	17.3	0	LRL	-0.586	-4.09	3.50	LRL	6.03	7.20	-1.17
LLR	17.3	17.3	0	LLR	-9.02	-2.00	-7.02	LLR	-8.81	-1.07	-7.74
LLL	19.8	19.8	0	LLL	-4.95	-4.95	0	LLL	-8.28	1.80	-10.1

Electromagnetic scattering yields n- \overline{n} conversion from O₂ and O₃ operators only! Interactions impact view on n- \overline{n} osc. even in q² \rightarrow 0 limit; (cf. K_S regeneration in matter); cf. Nesvizhevsky et al 2018....

B-L Violation via e-d scattering What sorts of limits could be set?

$$\begin{split} \text{Matching relation:} & \eta \bar{v}(\mathbf{p}',s') C \not{j} \gamma_5 u(\mathbf{p},s) = \frac{em}{3(p_{\text{eff}}^2 - m^2)} \frac{ej_{\mu}}{q^2} \\ \times \langle \bar{n}_q(\mathbf{p}',\mathbf{s}') | \int d^3 \mathbf{x} \sum_{\mathbf{i},\chi_1,\chi_2,\chi_3} '(\delta_{\mathbf{i}})_{\chi_1,\chi_2,\chi_3} [(\tilde{\mathcal{O}}_{\mathbf{i}})_{\chi_1,\chi_2,\chi_3}^{\mathrm{R}\,\mu} - (\tilde{\mathcal{O}}_{\mathbf{i}})_{\chi_1,\chi_2,\chi_3}^{\mathrm{L}\,\mu}] |\mathbf{n}_q(\mathbf{p},\mathbf{s})\rangle \\ & \text{The best limits come from small-angle scattering} \\ - \text{ using the uncertainty principle to estimate } \theta_{\min} \\ & \text{Sensitivity estimate for a beam energy of 20 MeV:} \end{split}$$

$$|\tilde{\delta}| \lesssim 2 \times 10^{-15} \sqrt{\frac{N \text{ events}}{1 \text{ event}}} \sqrt{\frac{1 \text{ yr}}{t}} \sqrt{\frac{0.6 \times 10^{17} \text{ s}^{-1}}{\phi}} \sqrt{\frac{1 \text{ m}}{L}} \sqrt{\frac{5.1 \times 10^{22} \text{ cm}^{-3}}{\rho}} \text{ GeV.}$$

for the Majorana mass of the neutron

Based on work in collaboration with Xinshuai Yan (U. Kentucky→CCNU)

Perspective

An (g-2)_e "anomaly" is a very new thing! (t > 2011)

The measurement of $a_e \equiv (g-2)_e/2$ was once the only way to determine the fine-structure constant α precisely [... Hanneke, Fogwell, Gabrielse, 2008]

Now with h/M_X (for X=Rb or Cs) from atom interferometry

we have another precise way of determine α

[Bouchendira et al., 2011 [Rb]; Parker et al., 2018 [Cs]]

Thus now both a_e and a_μ probe physics BSM!

a_{μ} and a_{e} Probe Physics Beyond the SM

(!)

 $a_e^{EXP} - a_e^{SM} [Rb] = (-131 \pm 77) \times 10^{-14}$ $a_e^{EXP} - a_e^{SM} [Cs] = (-88 \pm 36) \times 10^{-14}$

~2.4σ

 $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = (2.74 \pm 0.73) \times 10^{-9}$

Both the relative sign and size are important.

A viable new-physics solution cannot distinguish μ and e only by their mass! (Δa_e is 10x too big!)

[[]Aoyama, Kinoshita, Nio, 2019]

a_µ & a_e Signal Lepton Flavor Universality (LFU) Violation

"LFU" means that μ and e differ only in their mass

 $(\delta a_f)_{new} \sim m_f^2 / M_{new}^2$

Note $m_{\mu}^2/m_e^2 \sim 4.2 \times 10^4$ Thus Δa_e [Cs,Rb] implies $\Delta a_{\mu} \Rightarrow \Leftarrow$ BNL E821! Thus LFU is violated This also suggests the appearance of "light" new physics

Interpreting $\Delta a_{\mu} \& \Delta a_{e}$ Challenging to explain both at once BSM solutions must treat μ and e differently Some Possibilities

- i) a single, real scalar φ ; but introduce e- φ couplings to drive Barr-Zee graph for a_e [Davoudiasl & Marciano, 2018]
- ii) Models with Lµ-LT symmetry... [Crivellin et al., 2018]
- iii) Models that stabilize the Higgs sector... [Hiller et al., 2019]
- iv) A complex scalar with CP-odd couplings
- to e but CP-even couplings to μ [Liu, Wagner, Wang, 2018]

(Similar, e.g., to other Δa_{μ} solutions) Models with axial vector bosons can explain sign of Δa_e [Fayet, 2007; Kahn et al., 2017]

A New Interpretation of Δa_e **Enter Lepton-Number-Carrying Scalars** [SG & Yan, 2019] We adopt minimal scalar models previously used for the study of baryon & lepton number violation [Arnold, Fornal, & Wise, 2013 & 2013; SG & Yan, PLB 2019] Proton decay evaded by quantum number assignment No "secret ingredients"! a а

(b)

(a)

Δa_{e} Solutions Confront PVES Poubly Charged Scalars Appear in s-Channel

Δa_e Solutions Confront T Decay Scalar X₂ cannot explain the anomaly

Thus the possible Δa_e solutions are somewhat limited; employ "heavy" limits in what follows....