Exotic B and L Violating Processes

Julian Heeck

BLV circa 2020

7/7/2020

Unterstützt von / Supported by

UCI University of California, Irvine

Alexander von Humboldt Stiftung/Foundation

How exotic?

A) $\Delta B > 1$, $\Delta L > 1$, ... in EFT (heavy new physics). [Weinberg, '80]

• E.g. $pp \rightarrow e^+e^+$ or $p \rightarrow e^+\nu\nu$.

B) Flavored $\Delta B \& \Delta L$.

• E.g. $p \rightarrow e^{-}\mu^{+}\mu^{+}$ Or $t \rightarrow cb \tau^{+}$ ($\rightsquigarrow n \rightarrow \pi^{0} \nu_{\tau}$). [Hambye, **JH**, PRL '18] [Marciano '95; Hou, Nagashima, Soddu, '05]

C) $\Delta B \& \Delta L$ with *light* new particles.

• E.g. $n \to \pi^0 \chi$ or $p \to e^+ \chi$. See talks by Fornal and McKeen.

D) Dark matter induced $\Delta B \& \Delta L$.

• E.g. DM p \rightarrow n e⁺, DM p \rightarrow DM' e⁺, DM n \rightarrow DM' π^{0} .

[Kile, Soni, '09; Davoudiasl, Morrissey, Sigurdson, Tulin, PRL '10 & PRD '11; ...]

Homework: everything together.

Standard Model effective field theory

• EFT with Majorana neutrinos: [Weinberg, '79 & '80]

$$L = L_{SM} + \frac{LLHH}{\Lambda} + \sum_{j} \frac{\mathcal{O}_{j}}{\Lambda^{2}} + \sum_{j} \frac{\mathcal{O}_{j}'}{\Lambda^{3}} + \sum_{j} \frac{\mathcal{O}_{j}''}{\Lambda^{4}} + \dots$$

$$A = 2 \qquad A = \Delta L = 1 \qquad \Delta B = -\Delta L = 1$$

- $d_{\min} \geq \frac{9}{2} |\Delta B| + \frac{3}{2} |\Delta L|$. [Kobach '16; Helset, Kobach, '19]
- ΔB dominated by d = 6, unless forbidden by symmetry! [Weinberg, '80]

Get global view on ΔB and ΔL .

Baryon and lepton number

$ppp \ \rightarrow \ e^{+}\pi^{+}\pi^{+}$

 u^{c} d^{c} e^{c} v^{c} l Q H Symmetry Z_6 6 5 3 5 2 1 $\mathbb{Z}_6 \subset \mathsf{U}(1)_{2\mathsf{Y}-\mathsf{B}+3\mathsf{L}}$ [Babu, Gogoladze, Wang, '03]

⁷⁶Ge

2np

0.499 s 1/2- V

Q_1593

Q. 4290

allows for d = 15 $\Delta B = 3\Delta L = 3$ operators $\frac{1}{\Lambda^{11}}Q^5d^4\overline{\ell}, \dots$

- ppp $\rightarrow e^+\pi^+\pi^+$, ppn $\rightarrow e^+\pi^+$, pnn $\rightarrow e^+\pi^0$, nn $\rightarrow \overline{n}\overline{\nu}, \dots$
- $\tau(\text{pnn} \rightarrow \text{e}^+\pi^0) \simeq 3 \times 10^{33} \,\text{yr} \,\left(\frac{\Lambda}{100 \,\text{GeV}}\right)^{22}.$
- Limits:

$$\begin{split} &\tau(^{73}\text{Ge}(\text{pnn}) \to ^{70}\text{Ga}\,\text{e}^{+}\pi^{0}) > 7 \times 10^{23}\,\text{yr}, & & & & \\ &\tau(^{76}\text{Ge}(\text{ppn}) \to ^{73}\text{Zn}\,\text{e}^{+}\pi^{+}) > 5 \times 10^{25}\,\text{yr}, & & & \\ &\tau(^{76}\text{Ge}(\text{ppp}) \to ^{73}\text{Cu}\,\text{e}^{+}\pi^{+}\pi^{+}) > 5 \times 10^{25}\,\text{yr}, \dots \end{split}$$

[Majorana Demonstrator, PRD '19; see also EXO-200, '18]

SK, JUNO, DUNE, HK?

BLV circa 2020

$ppp \rightarrow e^{+}\pi^{+}\pi^{+}$

 u^{c} d^{c} e^{c} v^{c} l Q H Symmetry Z_6 6 5 3 5 2 1 $\mathbb{Z}_6 \subset \mathsf{U}(1)_{2\mathsf{Y}-\mathsf{B}+3\mathsf{L}}$ [Babu, Gogoladze, Wang, '03] allows for d = 15 $\Delta B = 3\Delta L = 3$ operators $\frac{1}{\Lambda^{11}}Q^5d^4\ell, \ldots$ • ppp $\rightarrow e^+\pi^+\pi^+$, ppn $\rightarrow e^+\pi^+$, pnn $\rightarrow e^+\pi^0$, nn $\rightarrow \overline{n}\overline{\nu}$, ... ⁷⁶Ge • $\tau(\text{pnn} \rightarrow \text{e}^+\pi^0) \simeq 3 \times 10^{33} \text{ yr } \left(\frac{\Lambda}{100 \text{ GeV}}\right)^{22}$. 3p • Limits: 2pn $\tau(^{73}\text{Ge}(\text{pnn}) \rightarrow ^{70}\text{Gae}^+\pi^0) > 7 \times 10^{23} \text{ yr},$ 2np $\tau(^{76}\text{Ge}(\text{ppn}) \rightarrow ^{73}\text{Zne}^+\pi^+) > 5 \times 10^{25} \text{ yr},$ $\tau(^{76}\text{Ge}(\text{ppp}) \rightarrow ^{73}\text{Cue}^+\pi^+\pi^+) > 5 \times 10^{25} \text{ yr}, \dots$ Q. 4290 [Majorana Demonstrator, PRD '19; see also EXO-200, '18] 0.499 s 1/2-

SK, JUNO, DUNE, HK?

BLV circa 2020

 $\mathbb{Z}^{(\mathsf{B}+\mathsf{L})/2}_{\mathsf{3}} imes \mathsf{U}(1)_{\mathsf{B}-\mathsf{L}} imes \mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}} imes \mathsf{U}(1)_{\mathsf{L}_{\mu}+\mathsf{L}_{\tau}-2\mathsf{L}_{\mathsf{e}}}$

 $\mathbb{Z}_{\mathbf{3}}^{(\mathsf{B}+\mathsf{L})/2} imes \mathsf{U}(1)_{\mathsf{B}-\mathsf{L}} imes \mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}} imes \mathsf{U}(1)_{\mathsf{L}_{\mu}+\mathsf{L}_{\tau}-2\mathsf{L}_{\mathsf{e}}}$

Proton decay = lepton flavor violation

Proton decay = lepton flavor violation

Proton decay = lepton flavor violation

Currently being probed: Old results:

Doable:

Done!

- Super-K searched for $p \rightarrow \ell \ell \ell !$
- Presented by Makoto Miura at BLV 2019 in Madrid.

[full paper: PRD '20]

Done!

- Super-K searched for $p \rightarrow \ell \ell \ell \ell$!
- Presented by Makoto Miura at BLV 2019 in Madrid.

[full paper: PRD '20]

Compatible with background, limits around 10³⁴ yr.

Currently being probed: Old results: Doable:

 $\Delta(L_{\mu}-L_{\tau})$ $\rightarrow \overline{p}\mu^+\mu^+$ τ^+ $\rightarrow e^{+}\mu^{+}\tau^{-}\tau^{-}$ pe^{-} $\to \overline{p}\mu^{+}e^{+}$ au^+ $\mu^+\mu^+e^$ *p* au^+ $\rightarrow \overline{p}e^{\mid +}e^{+}$ $\mu^+\pi^0$ *p* $p \rightarrow e^+ \pi^0$ $a \overline{p} \mu^+ e^ \Delta(L_{\mu} + L_{\tau} - 2L_e)$ au - $\rightarrow e^+e^+\mu^$ $au o \overline{p} \pi^0$ *p* $pe^+\!\!\mid\!\to\tau^{\mid\!\!+}\tau^+$ $\tau \rightarrow \overline{p}e^+\mu^$ $p\mu^+ \to \tau^{+}\tau^+$ $\tau \rightarrow \overline{p}e^+e^+\mu^-\mu^-$

Currently being probed: Old results: Doable:

 $\Delta B = \Delta L = 1$

Currently being probed: Old results: Doable:

 $\Delta B = \Delta L = 1$

Full ΔB coverage possible?

- Cannot to go through all $\Delta B > 0$ decays:
 - 38 two-body Δ B = 1 modes: N → AB. 36 limits.
 - 76 three-body Δ B = 1 modes: N → ABC. 33 limits.
 - 300 four-body ΔB = 1 modes: N → ABCD. 0 limits.
 - 118 two-body ΔB = 2 modes: NN → AB. 18 limits.
 - 500 three-body ΔB = 2 modes: NN → ABC. 0 limits.
 - ...
- *Exclusive* searches can reach $t \sim 10^{34}$ yr in SK.

Inclusive searches to the rescue!

Inclusive searches

Current limits:

 $\Gamma^{-1}(N \rightarrow e + anything) > 0.6 \times 10^{30} \text{ yr}, \text{ [Learned, Reines, Soni, '79]}$ $\Gamma^{-1}(N \rightarrow \mu + \text{anything}) > 12 \times 10^{30} \text{ yr.}$ [Cherry, Deakyne, Lande, Lee,

40 years old, improve with new tech!

Steinberg, Cleveland, '81]

• $p \rightarrow e^+$ + anything in SK could reach 10³² yr, judging by

 $\Gamma^{-1}(p \to e^+ \nu \nu) > 1.7 \times 10^{32} \text{ yr.}$ [Super-K, PRL '14]

- Do inclusive searches for $N \rightarrow \ell/\text{meson} + \text{anything}$.
- Also probes $\Delta B > 1$, light new physics, and dark matter!

Invisible neutron decay

• Special case of inclusive searches:

$$\begin{split} & \Gamma^{-1}(n \rightarrow neutrinos) > 0.58 \times 10^{30} \, \text{yr}, \\ & \Gamma^{-1}(nn \rightarrow neutrinos) > 1.4 \times 10^{30} \, \text{yr}, \\ & \Gamma^{-1}(nnn \rightarrow neutrinos) > 1.8 \times 10^{23} \, \text{yr}, \\ & \Gamma^{-1}(nnnn \rightarrow neutrinos) > 1.4 \times 10^{23} \, \text{yr}. \end{split}$$
 [KamLAND, PRL '06; see also SNO+, PRD '19] (Hazama, Ejiri, Fushimi, Ohsumi, PRC '94]

- Only signature is de-excitation of daughter nucleus. [Ejiri, '93]
- Every $\Delta B = k$ operator gives rise to k neutrons \rightarrow neutrinos.
- Neutrinos carry away arbitrary lepton number & flavor!
- Also probes light new physics and dark matter.
- Can JUNO improve KamLAND limit? DUNE?

Summary

- SM: $\mathbb{Z}_3^{(\mathsf{B}+\mathsf{L})/2} \times \mathsf{U}(1)_{\mathsf{B}-\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}} \times \mathsf{U}(1)_{\mathsf{L}_{\mu}+\mathsf{L}_{\tau}-2\mathsf{L}_{\mathsf{e}}}.$
- Violated? New particles! How? New structure!
- ΔB (& ΔL) probe
 - high scales (10¹⁵ GeV) or
 - high multiplicities (N \rightarrow 15 particles) or
 - high operator dimensions (d~15)!
- Go beyond two-body proton decay, do inclusive searches!

SK/HK,

DUNE,

JUNO,

Ονββ exp.?

- Still untapped areas:
 - Light new physics ($p \rightarrow \ell^+ + X, X \rightarrow SM$?).
 - Dark matter induced $\Delta B \& \Delta L$.

Exotic = new normal!

Backup

Symmetries of the Standard Model

• Rephasing lepton and quark fields:

$$\begin{split} & \mathsf{U}(1)_\mathsf{B} \times \mathsf{U}(1)_{\mathsf{L}_\mathsf{e}} \times \mathsf{U}(1)_{\mathsf{L}_\mu} \times \mathsf{U}(1)_{\mathsf{L}_\tau} \\ &= \mathsf{U}(1)_{\mathsf{B}+\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{B}-\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{L}_\mu-\mathsf{L}_\tau} \times \mathsf{U}(1)_{\mathsf{L}_\mu+\mathsf{L}_\tau-2\mathsf{L}_\mathsf{e}} \,. \end{split}$$

• $U(1)_{B+L}$ broken non-perturbatively to \mathbb{Z}_3 ,

$$\Delta B = 3 \quad \wedge \quad \Delta L_e = \Delta L_\mu = \Delta L_ au = 1 \,,$$

but unobservable at low temperatures. ['t Hooft, PRL '76]

• True accidental global symmetry:

$$\mathbb{Z}_3^{(\mathsf{B}+\mathsf{L})/2} \times \mathsf{U}(1)_{\mathsf{B}-\mathsf{L}} \times \mathsf{U}(1)_{\mathsf{L}_\mu-\mathsf{L}_\tau} \times \mathsf{U}(1)_{\mathsf{L}_\mu+\mathsf{L}_\tau-2\mathsf{L}_e}.$$

$\Delta L = 2$

• Neutrinoless double β decay: (A,Z) \rightarrow (A,Z+2) + 2 e⁻

Half-life $T_{0 \ \nu\beta\beta}$ (⁷⁶Ge) in yr

in β stable isotopes.

- Current limits ~ 10^{26} yr.
- $0\nu 2\beta \Leftrightarrow Majorana \nu$.

$\Delta L = 4$

- $\Delta L = 4$ in rare decays? (A,Z) \rightarrow (A,Z+4) + 4 e⁻!
- 3 candidates: ⁹⁶Zr, ¹³⁶Xe, ¹⁵⁰Nd.
 [JH, Rodejohann, EPL '13]
- First limit: $au_{0
 u4\beta}(^{150}\text{Nd}) > 10^{21}\text{yr}.$ [NEMO-3, PRL '17]
- Hard to find testable models. [Fonseca, Hirsch, PRD '18; see however Dasgupta, Kang, Popov, PRD '19]
- Could still explain matterantimatter asymmetry.
 [JH, PRD '13]

BLV circa 2020

$p \rightarrow \mu^+ \mu^+ e^-$

- Minimal leptoquark example: $\phi_1 \sim (\mathbf{3}, \mathbf{3}, -2/3), \ \phi_2 \sim (\mathbf{3}, \mathbf{2}, 7/3).$
- $L_{\mu}+2L_{e}-3L_{\tau}$ ensures simple structure $y_{j}\overline{L}_{\mu}\phi_{1}Q_{j}^{c} + f_{j}\overline{u}_{j}\phi_{2}L_{e} + \lambda\phi_{1}^{2}\phi_{2}H$.
- Final $\Delta B=1$ operator: $\frac{1}{\Lambda^6}QQuL_{\mu}L_{\mu}\overline{L}_{e}H$.
- Lattice QCD input: $\langle 0|uud|p \rangle$.

$$\Gamma(\mathbf{p} \rightarrow \mu^{+}\mu^{+}\mathbf{e}^{-}) \simeq \frac{\langle \mathbf{H} \rangle^{2} \beta^{2} \mathbf{m}_{\mathbf{p}}^{5}}{6144\pi^{3} \Lambda^{12}} \simeq \frac{(100 \mathrm{TeV}/\Lambda)^{12}}{10^{33} \mathrm{yr}}$$

[Hambye, **JH**, PRL '18]

Lepton universality in $b \rightarrow s\mu^-\mu^+$

- $\frac{y_j \overline{y}_i}{m_{\phi_1}^2} (\overline{L}_{\mu} Q_j^c) (Q_i L_{\mu})$.
- Modifies $b \rightarrow s \mu^{-} \mu^{+}$: $R(K^{(*)}) = \frac{B \rightarrow K^{(*)} \mu^{+} \mu^{-}}{B \rightarrow K^{(*)} e^{+} e^{-}}.$
- LHCb: R(K)~0.85, R(K*)~0.67.
- Improve fit with

 $\mathrm{m}_{\phi_1}\simeq 30\,\mathrm{TeV}\sqrt{y_2y_3}\,.$

[Alok+, PRD '17; Dorsner+, JHEP '17; Capdevila+, JHEP '18, Algueró+, EPJC '19]

BLV circa 2020

Two-body nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$			
$p \rightarrow e^+ + \gamma$	0	41000 72	$n \to e^- + \pi^+$	2	65 79 (5300* 73)
$p \rightarrow e^+ + \pi^0$	0	16000 24	$n \to e^- + \rho^+$	2	62 79 $(217^*$ 65)
$p \to e^+ + \eta$	0	10000 73	$n \to e^- + K^+$	2	32 <mark>62</mark>
$p \rightarrow e^+ + \rho^0$	0	720 73	$n \to e^- + K^{*,+}$	2	
$p \rightarrow e^+ + \omega$	0	1600 <mark>73</mark>	$n \rightarrow e^+ + \pi^-$	0	5300 <mark>73</mark>
$p \to e^+ + K^0$	0	1000 74	$n \to e^+ + \rho^-$	0	217 <u>65</u>
$p \to e^+ + K^{*,0}$	0	84 65	$n \to e^+ + K^-$	0	17 <u>65</u>
$p \to \mu^+ + \gamma$	0	21000 72	$n \to e^+ + K^{*,-}$	0	
$p \to \mu^+ + \pi^0$	0	7700 24	$n \rightarrow \mu^- + \pi^+$	2	49 79 (3500^* 73)
$p \to \mu^+ + \eta$	0	4700 73	$n \to \mu^- + \rho^+$	2	$7 \ \underline{79} \ (228^* \ \underline{65})$
$p o \mu^+ + \rho^0$	0	570 <mark>73</mark>	$n \to \mu^- + K^+$	2	57 <u>62</u>
$p \to \mu^+ + \omega$	0	2800 73	$n \to \mu^+ + \pi^-$	0	3500 <mark>73</mark>
$p \to \mu^+ + K^0$	0	1600 <mark>75</mark>	$n \to \mu^+ + \rho^-$	0	228 <u>65</u>
$p \rightarrow \nu + \pi^+$	0,2	390 <mark>76</mark>	$n \to \mu^+ + K^-$	0	26 <u>65</u>
$p \rightarrow \nu + \rho^+$	0,2	162 65	$n \rightarrow \nu + \gamma$	0,2	550 <mark>28</mark>
$p \rightarrow \nu + K^+$	0,2	5900 77	$n \rightarrow \nu + \pi^0$	0,2	1100 <u>76</u>
$p \rightarrow \nu + K^{*,+}$	0,2	130 78	$n \rightarrow \nu + \eta$	0,2	158 <u>65</u>
			$n \rightarrow \nu + \rho^0$	0,2	19 <mark>79</mark>
			$n \rightarrow \nu + \omega$	0,2	108 <u>65</u>
			$n \rightarrow \nu + K^0$	0,2	130 74
[14 Takhie	toy DDD '20	1	$n \to \nu + K^{*,0}$	0,2	78 <mark>65</mark>

[JH, Takhistov, PRD '20]

Three-body nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$p \rightarrow e^- + e^+ + e^+$	0	793 65
$p \rightarrow e^- + e^+ + \mu^+$	0	529 <mark>65</mark>
$p \rightarrow e^+ + e^+ + \mu^-$	0	529 [*] 65
$p \rightarrow e^- + \mu^+ + \mu^+$	0	6 64 (359 [*] 65)
$p \rightarrow e^+ + \mu^- + \mu^+$	0	359 65
$p \rightarrow \mu^- + \mu^+ + \mu^+$	0	675 <mark>65</mark>
$p \rightarrow e^+ + 2\nu$	0,2	170 81
$p \rightarrow \mu^+ + 2\nu$	0,2	220 81
$p \rightarrow e^- + 2\pi^+$	2	30 62 (82* 65)
$p \rightarrow e^- + \pi^+ + \rho^+$	2	
$p \rightarrow e^- + K^+ + \pi^+$	2	75 <mark>65</mark>
$p \rightarrow e^+ + 2\gamma$	0	100 82 (793* 65)
$p \rightarrow e^+ + \pi^- + \pi^+$	0	82 65
$p \rightarrow e^+ + \rho^- + \pi^+$	0	
$p \rightarrow e^+ + K^- + \pi^+$	0	75* <mark>65</mark>
$p \rightarrow e^+ + \pi^- + \rho^+$	0	
$p \rightarrow e^+ + \pi^- + K^+$	0	75 [*] 65
$p \rightarrow e^+ + 2\pi^0$	0	147 <mark>65</mark>
$p \rightarrow e^+ + \pi^0 + \eta$	0	
$p \rightarrow e^+ + \pi^0 + \rho^0$	0	
$p \rightarrow e^+ + \pi^0 + \omega$	0	
$p \rightarrow e^+ + \pi^0 + K^0$	0	
$p \rightarrow \mu^- + 2\pi^+$	2	17 62 (133 [*] 65)
$p \rightarrow \mu^- + K^+ + \pi^+$	2	245 <u>65</u>
$p \rightarrow \mu^+ + 2\gamma$	0	529 [*] 65
$p \rightarrow \mu^+ + \pi^- + \pi^+$	0	133 65
$p \rightarrow \mu^+ + K^- + \pi^+$	0	245 [*] 65
$p \rightarrow \mu^+ + \pi^- + K^+$	0	245 [*] 65
$p \rightarrow \mu^+ + 2\pi^0$	0	101 65
$p \rightarrow \mu^+ + \pi^0 + \eta$	0	
$p \rightarrow \mu^+ + \pi^0 + K^0$	0	
$p \rightarrow \nu + \pi^+ + \pi^0$	0,2	
$p \rightarrow \nu + \pi^+ + \eta$	0,2	
$p \rightarrow \nu + \pi^+ + \rho^0$	0,2	
$p \rightarrow \nu + \pi^+ + \omega$	0,2	
$p \rightarrow \nu + \pi^+ + K^0$	0,2	
$p \rightarrow \nu + \rho^+ + \pi^0$	0,2	
$p \rightarrow \nu + K^+ + \pi^0$	0.2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$n \rightarrow \nu + e^- + e^+$	0,2	257 65
$n \rightarrow \nu + e^- + \mu^+$	0,2	83 <mark>65</mark>
$n \rightarrow \nu + e^+ + \mu^-$	0,2	83* 65
$n \rightarrow \nu + \mu^- + \mu^+$	0,2	79 65
$n \rightarrow 3\nu$	0,2,4	0.58 83
$n \rightarrow e^- + \pi^+ + \pi^0$	2	29 62 (52^* 65)
$n \to e^- + \pi^+ + \eta$	2	
$n \rightarrow e^- + \pi^+ + \rho^0$	2	
$n \to e^- + \pi^+ + \omega$	2	
$n \rightarrow e^- + \pi^+ + K^0$	2	
$n \rightarrow e^- + \rho^+ + \pi^0$	2	
$n \rightarrow e^- + K^+ + \pi^0$	2	
$n \rightarrow e^+ + \pi^- + \pi^0$	0	52 <u>65</u>
$n \rightarrow e^+ + \pi^- + \eta$	0	
$n \rightarrow e^+ + \pi^- + \rho^0$	0	
$n \rightarrow e^+ + \pi^- + \omega$	0	
$n \rightarrow e^+ + \pi^- + K^0$	0	18 82
$n \rightarrow e^+ + \rho^- + \pi^0$	0	
$n \rightarrow e^+ + K^- + \pi^0$	0	
$n \rightarrow \mu^- + \pi^+ + \pi^0$	2	34 62 $(74^{*}$ 65)
$n \rightarrow \mu^- + \pi^+ + \eta$	2	
$n \rightarrow \mu^- + \pi^+ + K^0$	2	
$n \to \mu^- + K^+ + \pi^0$	2	
$n \rightarrow \mu^+ + \pi^- + \pi^0$	0	74 65
$n \rightarrow \mu^+ + \pi^- + \eta$	0	
$n \rightarrow \mu^+ + \pi^- + K^0$	0	
$n \rightarrow \mu^+ + K^- + \pi^0$	0	
$n \rightarrow \nu + 2\gamma$	0,2	219 <u>65</u>
$n \rightarrow \nu + \pi^- + \pi^+$	0,2	
$n \rightarrow \nu + \rho^- + \pi^+$	0,2	
$n \rightarrow \nu + K^- + \pi^+$	0,2	
$n \rightarrow \nu + \pi^- + \rho^+$	0,2	
$n \rightarrow \nu + \pi^- + K^+$	0,2	
$n \rightarrow \nu + 2\pi^0$	0,2	
$n \rightarrow \nu + \pi^0 + \eta$	0,2	
$n \rightarrow \nu + \pi^0 + \rho^0$	0,2	
$n \rightarrow \nu + \pi^0 + \omega$	0,2	
$n \rightarrow \nu + \pi^0 + K^0$	0,2	

[JH, Takhistov, PRD '20] Does not include SK's 2020 limits on $p \rightarrow \ell \ell \ell$.

Two-body di-nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$pp \rightarrow e^+ + e^+$	0	4200 72
$pp \rightarrow \mu^+ + \mu^+$	0	4400 72
$pp \to e^+ + \mu^+$	0	4400 72
$pp \to e^+ + \tau^+$	0	
$pp \to \pi^+ + \pi^+$	2	72 115
$pp \rightarrow \pi^+ + \rho^+$	2	
$pp \to \pi^+ + K^+$	2	
$pp \to \pi^+ + K^{*,+}$	2	
$pp \to \rho^+ + \rho^+$	2	
$pp \rightarrow \rho^+ + K^+$	2	
$pp \rightarrow \rho^+ + K^{*,+}$	2	
$pp \to K^+ + K^+$	2	170 116
$pp \rightarrow K^+ + K^{*,+}$	2	
$pp \rightarrow K^{*,+} + K^{*,+}$	2	

$nn \rightarrow e^+ + e^-$	2	4200 72
$nn \rightarrow e^+ + \mu^-$	2	4400 72
$nn \rightarrow \mu^+ + e^-$	2	4400 72
$nn \rightarrow \mu^+ + \mu^-$	2	4400 72
$nn \rightarrow e^+ + \tau^-$	2	
$nn \rightarrow \tau^+ + e^-$	2	
$nn \to 2\nu$	0,2,4	1.4 83
$nn \to 2\gamma$	2	4100 72
$nn \to \gamma + \pi^0$	2	
$nn \to \gamma + \eta$	2	
$nn \to \gamma + \rho^0$	2	
$nn \to \gamma + \omega$	2	
$nn \to \gamma + \eta'$	2	
$nn \to \gamma + K^0$	2	
$nn \to \gamma + K^{*,0}$	2	
$nn \to \gamma + D^0$	2	
$nn \to \gamma + \phi$	2	
$nn \to \pi^- + \pi^+$	2	$0.7 \ \boxed{62} \ (72^* \ \boxed{115})$
$nn \rightarrow \pi^+ + \rho^-$	2	
$nn \rightarrow K^- + \pi^+$	2	
$nn \rightarrow K^{*,-} + \pi^+$	2	
$nn \rightarrow \pi^- + \rho^+$	2	
$nn \rightarrow K^+ + \pi^-$	2	
$nn \to K^{*,+} + \pi^-$	2	
$nn \rightarrow 2\pi^0$	2	404 115
$nn \rightarrow \eta + \pi^0$	2	
$nn \rightarrow \pi^0 + \rho^0$	2	
$nn \to \pi^0 + \omega$	2	
$nn \to \eta' + \pi^0$	2	
$nn \to K^0 + \pi^0$	2	
$nn \to K^{*,0} + \pi^0$	2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$nn \rightarrow \pi^0 + \phi$	2	
$nn \rightarrow 2\eta$	2	
$nn \rightarrow \eta + \rho^0$	2	
$nn \rightarrow \eta + \omega$	2	
$nn \rightarrow \eta + \eta'$	2	
$nn \rightarrow \eta + K^0$	2	
$nn ightarrow \eta + K^{*,0}$	2	
$nn \rightarrow \eta + \phi$	2	
$nn \rightarrow 2\rho^0$	2	
$nn ightarrow ho^0 + \omega$	2	
$nn \to \eta' + \rho^0$	2	
$nn \rightarrow K^0 + \rho^0$	2	
$nn \rightarrow K^{*,0} + \rho^0$	2	
$nn \rightarrow \rho^0 + \phi$	2	
$nn \rightarrow \rho^- + \rho^+$	2	
$nn \rightarrow K^+ + \rho^-$	2	
$nn \rightarrow K^{*,+} + \rho^-$	2	
$nn \rightarrow K^- + \rho^+$	2	
$nn \rightarrow K^{*,-} + \rho^+$	2	
$nn \rightarrow 2\omega$	2	
$nn \rightarrow \eta' + \omega$	2	
$nn \rightarrow K^0 + \omega$	2	
$nn \rightarrow K^{*,0} + \omega$	2	
$nn \rightarrow \omega + \phi$	2	
$nn \to \eta' + K^0$	2	
$nn \to \eta' + K^{*,0}$	2	
$nn \to K^- + K^+$	2	170^{*} 116
$nn \to K^+ + K^{*,-}$	2	
$nn \to K^- + K^{*,+}$	2	
$nn \rightarrow 2K^0$	2	
$nn \to K^{*,0} + K^0$	2	
$nn \to K^0 + \phi$	2	
$nn \to 2K^{*,0}$	2	
$nn \rightarrow K^{*,-} + K^{*,+}$	2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$pn \rightarrow e^+ + \nu$	0,2	260 28
$pn \rightarrow \mu^+ + \nu$	0,2	200 28
$pn \rightarrow \tau^+ + \nu$	0,2	29 28
$pn \rightarrow \gamma + \pi^+$	2	
$pn \rightarrow \gamma + \rho^+$	2	
$pn \to \gamma + K^+$	2	
$pn \to \gamma + K^{*,+}$	2	
$pn \rightarrow \gamma + D^+$	2	
$pn \rightarrow \pi^+ + \pi^0$	2	$170 \ 115$
$pn \rightarrow \eta + \pi^+$	2	
$pn \to \pi^+ + \rho^0$	2	
$pn \to \pi^+ + \omega$	2	
$pn \rightarrow \eta' + \pi^+$	2	
$pn \rightarrow K^0 + \pi^+$	2	
$pn \rightarrow K^{*,0} + \pi^+$	2	
$pn \rightarrow \pi^+ + \phi$	2	
$pn \rightarrow \pi^0 + \rho^+$	2	
$pn \rightarrow K^+ + \pi^0$	2	
$pn \rightarrow K^{*,+} + \pi^0$	2	
$pn \rightarrow \eta + \rho^+$	2	
$pn \rightarrow \eta + K^+$	2	
$pn \rightarrow \eta + K^{*,+}$	2	
$pn \rightarrow \rho^+ + \rho^0$	2	
$pn \to K^+ + \rho^0$	2	
$pn \to K^{*,+} + \rho^0$	2	
$pn \to \rho^+ + \omega$	2	
$pn \to \eta' + \rho^+$	2	
$pn \rightarrow K^0 + \rho^+$	2	
$pn \rightarrow K^{*,0} + \rho^+$	2	
$pn \rightarrow \rho^+ + \phi$	2	
$pn \rightarrow K^+ + \omega$	2	
$pn \to K^{*,+} + \omega$	2	
$pn \rightarrow \eta' + K^+$	2	
$pn \to \eta' + K^{*,+}$	2	
$pn \rightarrow K^+ + K^0$	2	
$pn \to K^+ + K^{*,0}$	2	
$pn \rightarrow K^+ + \phi$	2	
$pn \to K^{*,+} + K^0$	2	
$pn \to K^{*,+} + K^{*,0}$	2	

[JH, Takhistov, PRD '20]

BLV circa 2020