Neutron Dark Decay: Portal to a Baryonic Dark Sector

Bartosz Fornal

University of Utah

Workshop on Baryon and Lepton Number Violation Case Western Reserve University, July 7, 2020

In collaboration with: Benjamin Grinstein

We have a problem !

DARK MATTER

Vera Rubin

Current knowledge about the Universe

What exactly is dark matter?

What exactly is dark matter?

What exactly is dark matter?

atomic nucleus

 $\tau_n \approx 15 \min$

proton

Irène Joliot-Curie

James Chadwick

Neutron decay in the Standard Model

Neutron lifetime in the Standard Model

Theoretical prediction

$$\tau_n = \frac{4908.6(1.9) \text{ s}}{|V_{ud}|^2(1+3g_A^2)}$$

Czarnecki, Marciano & Sirlin, PRL 120, 202002 (2018)

$$\mathcal{M} = \frac{1}{\sqrt{2}} G_F V_{ud} g_V \left[\bar{p} \gamma_\mu n - g_A \bar{p} \gamma_5 \gamma_\mu n \right] \left[\bar{e} \gamma^\mu (1 - \gamma_5) \nu \right]$$

Using the PDG average for g_A

$$880.5 \,\mathrm{s} < \tau_n < 886.0 \,\mathrm{s}$$

Lattice result

$$870 \,\mathrm{s} < \tau_n < 900 \,\mathrm{s}$$

Chang et al., Nature 558, 91 (2018)

$$g_A = 1.271 \pm 0.013$$

Bottle experiments

$$N_n(t) = N_n(0) e^{-t/\tau_n}$$

Fit of an exponent to decay data points

$$au_n^{ ext{bottle}} = au_n$$

Source: https://www.scientificamerican.com

The decay rate to protons is measured

$$\frac{dN_p(t)}{dt} = -\frac{N_n(t)}{\tau_n^{\text{beam}}}$$

$$\tau_n^{\rm beam} = -\frac{N_n}{dN_p/dt}$$

Source: https://www.scientificamerican.com

If neutron decays only via beta decay

Beam experiments

 $n \to p + e^- + \bar{\nu}_e$

there should be the equality:

$$\tau_n^{\rm beam} = \tau_n^{\rm bottle}$$

Bottle experiments

but

$$\tau_n^{\text{beam}} = 888.0(2.1)\,\mathrm{s} > \tau_n^{\text{bottle}} = 879.3(0.8)\,\mathrm{s}$$

Neutron Lifetime Measurements

$$au_n^{\mathrm{beam}} > au_n^{\mathrm{bottle}}$$

Bottle experiments

$$\tau_n^{\rm beam} = -\frac{N_n}{dN_p/dt}$$

$$au_n^{\mathrm{beam}} > au_n^{\mathrm{bottle}}$$

Bottle experiments

$$\tau_n^{\text{beam}} = -\frac{N_n}{dN_p/dt} = -\frac{N_n}{\text{Br}(n \to p + \text{anything})} \frac{N_n}{dN_n/dt}$$

$$au_n^{\mathrm{beam}} > au_n^{\mathrm{bottle}}$$

Bottle experiments

$$\begin{split} \tau_n^{\text{beam}} &= -\frac{N_n}{dN_p/dt} = -\frac{N_n}{\text{Br}(n \to p + \text{anything}) dN_n/dt} \\ &= \frac{\tau_n^{\text{bottle}}}{\text{Br}(n \to p + \text{anything})} \geq \tau_n^{\text{bottle}} \end{split}$$

Neutron dark decay

Nuclear physics bounds

p MEAN LIFE

.

A test of baryon conservation. See the "p Partial Mean Lives" section below for limits for identified final states. The limits here are to "anything" or are for "disappearance" modes of a bound proton (p) or (n). See also the 3ν modes in the "Partial Mean Lives" section. Table 1 of BACK 03 is a nice summary.

LIMIT (years)	PARTICLE	CL%	DOCUMENT ID		TECN	COMMENT
>5.8 × 10 ²⁹	n	90	¹ ARAKI	06	KLND	$n \rightarrow$ invisible
>2.1 × 10 ²⁹	P	90	² AHMED	04	SNO	$p \rightarrow \text{invisible}$
• • • We do not	use the followi	ng data f	for averages, fits, lim	its, et	c. • • •	
$> 1.9 imes 10^{29}$	n	90	² AHMED	04	SNO ($n \rightarrow \text{invisible}$
$> 1.8 \times 10^{25}$	n	90	³ BACK	03	BORX	
$> 1.1 \times 10^{26}$	p	90	³ BACK	03	BORX	
$> 3.5 \times 10^{28}$	p	90	⁴ ZDESENKO	03		$p \rightarrow invisible$
$>1 \times 10^{28}$	p	90	⁵ AHMAD	02	SNO	$p \rightarrow \text{invisible}$
$>4 \times 10^{23}$	p	95	TRETYAK	01		$d \rightarrow n + ?$
$> 1.9 \times 10^{24}$	р	90	⁶ BERNABEI	00 B	DAMA	
$> 1.6 \times 10^{25}$	p, n		^{7,8} EVANS	77		
$>3 \times 10^{23}$	р		⁸ DIX	70	CNTR	
$>3 \times 10^{23}$	p, n		^{8,9} FLEROV	58		
						https://pdg.lbl.g

.gov .ps.//pug

Nuclear physics bounds

p MEAN LIFE

LINALT

A test of baryon conservation. See the "*p* Partial Mean Lives" section below for limits for identified final states. The limits here are to "anything" or are for "disappearance" modes of a bound proton (*p*) or (*n*). See also the 3ν modes in the "Partial Mean Lives" section. Table 1 of BACK 03 is a nice summary.

LIMIT (years)	PARTICLE	CL%	DOCUMENT ID		TECN	COMMENT
>5.8 × 10 ²⁹	n	90	¹ ARAKI	06	KLND	$n \rightarrow$ invisible
>2.1 × 10 ²⁹	P	90	² AHMED	04	SNO	$p \rightarrow \text{invisible}$
$\bullet \bullet \bullet$ We do not use	the following	data for a	averages, fits, limi	ts, et		
$> 1.9 \times 10^{29}$	n	90	² AHMED	04	SNO	$n \rightarrow \text{invisible}$
)*	γ 15 O			$p \rightarrow \text{invisible}$ $p \rightarrow \text{invisible}$ $d \rightarrow n + ?$ https://pdg.lbl.gov
						niths://bag.ipi.gov

Nuclear physics bounds

Nuclear physics bounds – ⁹Be

Neutron dark decay

⁹Be would dark decay if ⁹Be ⁹Be $M_{(^{9}Be)} =$ $M_{(^{8}Be)} + m_n - 1.664 \text{ MeV} > M_{(^{8}Be)} + M_f$

⁹Be remains stable if

 $m_n - 1.664 \text{ MeV} < M_f < m_n$

i.e., $937.900 \text{ MeV} < M_f < 939.565 \text{ MeV}$

Nuclear physics bounds – ⁹Be (and considering the instability of ⁸Be)

Neutron dark decay

⁹Be would dark decay if

⁹Be remains stable if

i.e.,

 $937.993 \,\mathrm{MeV} < M_f < 939.565 \,\mathrm{MeV}$

 $m_n - 1.664 \text{ MeV} + 0.093 \text{ MeV} < M_f < m_n$

Pfutzner & Riisager, PRC 97, 042501(R) (2018)

Scenario I

 $937.993 \text{ MeV} < m_{\chi} < 939.565 \text{ MeV}$

Dirac

fermion

 $B_{\chi} = 1$

 $0 < E_{\gamma} < 1.572 \,\mathrm{MeV}$

Baryonic dark matter

 $937.993 \text{ MeV} < m_{\chi} < 938.783 \text{ MeV}$

 $0.782 \text{ MeV} < E_{\gamma} < 1.572 \text{ MeV}$

DM with baryon number also in: Duerr, Fileviez Perez & Wise, PRL 110, 231801 (2013)

Scenario I Neutron -----> dark particle + photon

Effective Lagrangian

$$\mathcal{L}_{1}^{\text{eff}} = \bar{n} \left(i \partial \!\!\!/ - m_{n} + \frac{g_{n} e}{8m_{n}} \sigma^{\mu\nu} F_{\mu\nu} \right) n + \bar{\chi} \left(i \partial \!\!\!/ - m_{\chi} \right) \chi + \varepsilon \left(\bar{n} \chi + \bar{\chi} n \right)$$

$$\mathcal{L}_{n\to\chi\gamma}^{\text{eff}} = \frac{g_n e}{8m_n} \frac{\varepsilon}{(m_n - m_\chi)} \,\bar{\chi} \,\sigma^{\mu\nu} F_{\mu\nu} \,n$$

Neutron dark decay rate

$$\Delta\Gamma_{n\to\chi\gamma} = \frac{g_n^2 e^2}{128\pi} \left(1 - \frac{m_\chi^2}{m_n^2}\right)^3 \frac{m_n \varepsilon^2}{(m_n - m_\chi)^2}$$

Scenario I

Model 1 (minimal)

$$\mathcal{L}_1 = \left(\lambda_q \,\epsilon^{ijk} \,\overline{u_L^c}_i \, d_{Rj} \Phi_k + \lambda_\chi \Phi^{*i} \bar{\chi} \, d_{Ri} + \text{h.c.}\right) - M_\Phi^2 |\Phi|^2 - m_\chi \, \bar{\chi} \, \chi$$

Mixing parameter

$$\varepsilon = \frac{\beta \, \lambda_q \lambda_\chi}{M_\Phi^2}$$

$$\langle 0|\epsilon^{ijk} \left(\overline{u_{L\,i}^c} d_{Rj}\right) d_{Rk}^{\rho}|n\rangle = \beta \left(\frac{1+\gamma_5}{2}\right)_{\sigma}^{\rho} u^{\sigma}$$

Lattice calculation gives

 $\beta \approx 0.014 \; {\rm GeV}^3$

Aoki et al., PRD 96, 014506 (2017)

Scenario I

$$\mathcal{L}_1 = \left(\lambda_q \,\epsilon^{ijk} \,\overline{u_L^c}_i \, d_{Rj} \Phi_k + \lambda_\chi \Phi^{*i} \bar{\chi} \, d_{Ri} + \text{h.c.}\right) - M_\Phi^2 |\Phi|^2 - m_\chi \, \bar{\chi} \, \chi$$

To explain the neutron lifetime discrepancy

$$\Delta\Gamma_{n\to\chi\gamma}\approx\Gamma_n/100$$
 \longrightarrow $\frac{M_{\Phi}}{\sqrt{|\lambda_q\lambda_\chi|}}\approx 200\,\mathrm{TeV}$

Constraints on masses

937.993 MeV
$$< m_{\chi} + m_{\phi} < 939.565$$
 MeV

937.993 MeV < $m_{\tilde{\chi}}$

Scenario II

Model 2

Neutron dark decay rate

Theoretical and experimental developments

Neutron star constraints
Self-interacting dark sector
Repulsive DM-baryon interactions
Baryogenesis, meson dark decays
Dark matter capture
Neutron-dark matter annihilation
Connection to other anomalies

Theory

Neutron dark decays

Nuclear dark decays

Beam and bottle measurements

Neutron star constraints

• McKeen, Nelson, Reddy & Zhou, PRL 121, 061802 (2018), arXiv:1802.08244

• Baym, Beck, Geltenbort & Shelton, PRL 121, 061801 (2018), arXiv:1802.08282

Motta, Guichon & Thomas,
J. Phys. G 45, 05LT01 (2018), arXiv:1802.08427

Neutron star masses < 0.8 M_{\odot}

From observation: neutron stars with masses up to 2 M_{\odot}

Neutron star constraints

• McKeen, Nelson, Reddy & Zhou, PRL 121, 061802 (2018), arXiv:1802.08244

• Baym, Beck, Geltenbort & Shelton, PRL 121, 061801 (2018), arXiv:1802.08282

• Motta, Guichon & Thomas, J. Phys. G 45, 05LT01 (2018), arXiv:1802.08427

Observed neutron star masses allowed if there are:

strong repulsive self-interactions in the dark sector ~ SIDM (Spergel & Steinhardt, PRL 84, 3760 (2000))

Model with dark sector self-interactions (1)

Neutron decay to a dark particle and a dark photon

Cline & Cornell, JHEP 07, 081 (2018)

Model with dark sector self-interactions (2)

Karananas & Kassiteridis, JCAP 09, 036 (2018)

Highlights of the model:

solves small-scale structure problems of Λ CDM

Model with DM-neutron repulsive interactions

Lagrangian

$$\mathcal{L} = \lambda_q \, \epsilon^{ijk} \, \overline{u_L^c}_i \, d_{Rj} \Phi_k + \lambda_\chi \Phi^{*i} \bar{\tilde{\chi}} \, d_{Ri} + \lambda_\phi \, \bar{\tilde{\chi}} \, \chi \, \phi \\ + \mu H^{\dagger} H \phi + g_\chi \bar{\chi} \chi \, \phi + \text{h.c.}$$

Grinstein, Kouvaris & Nielsen, PRL 123 (2019) 091601

Other theoretical follow-ups

Neutral hadron dark decays

Barducci, Fabbrichesi & Gabrielli, PRD 98, 035049 (2018)

Neutron-mirror neutron oscillations

Berezhiani, EPJ C 79, 484 (2019); LHEP 118, 1 (2019); Tan, PLB 797, 134921 (2019); BF & Grinstein, arXiv:1902.08975

Special case of neutron dark decay with

$$\chi=n'$$

Other theoretical follow-ups

Neutral hadron dark decays

Barducci, Fabbrichesi & Gabrielli, PRD 98, 035049 (2018)

Neutron-mirror neutron oscillations

Berezhiani, EPJ C 79, 484 (2019); LHEP 118, 1 (2019); Tan, PLB 797, 134921 (2019); BF & Grinstein, arXiv:1902.08975

Special case of neutron dark decay with

Experiment: Neutron dark matter + photon

n no y Los Alamos UCN n χ 0.5 Φ UCN Background 0.4 UCN-Background Counts/10s/2.1 keV bin O S Capture gammas $0.782 \text{ MeV} < E_{\gamma} < 1.664 \text{ MeV}$ UCN-Background-Capture Proposed DM peak 0.1 0 600 800 1000 1200 1400 1600 Energy (keV) Tang et al., PRL 121, 022505 (2018) ORTE

Experiment: Neutron dark matter + photon

Limits from hydrogen dark decay $H \rightarrow \chi \nu_e$

Berezhiani, LHEP 2 (2019) 1, 118 McKeen & Pospelov, arXiv:2003.02270

McKeen & Pospelov, arXiv:2003.02270 [hep-ph]

Experiment: Neutron \rightarrow dark particle + e^+e^-

Los Alamos UCN

Sun et al., PRC 97, 052501 (2018)

ILL, Grenoble

Klopf et al., PRL 122, 222503 (2019)

Nuclear physics bounds – reminder

Neutron dark decay

⁹Be would dark decay if

 $M_{(^{9}\text{Be})} =$ $M_{(^{8}\text{Be})} + m_n - 1.664 \text{ MeV} > M_{(^{8}\text{Be})} + M_f$

⁹Be remains stable if

$$m_n - 1.664 \text{ MeV} < M_f < m_n$$

Nuclear dark decays

Dark decays possible in unstable nuclei with S(n) < 1.664 MeV

$$M + m_n - S(n) > M + M_f$$

937.993 MeV <
$$M_f < m_n - S(n)$$

Nuclear dark decays

An example of an unstable nucleus with S(n) < 1.572 MeV is ¹¹Li with $S(n)_{11Li} = 0.4$ MeV that could decay via

¹¹Li \to ¹⁰Li + χ as long as 937.993 MeV < $M_f < m_n - S_n$

Better candidate (with a halo neutron):

Pfutzner & Riisager, Examining the possibility to observe neutron dark decay in nuclei, PRC 97, 042501(R) (2018)

$$S(n)_{(^{11}\text{Be})} = 0.502 \text{ MeV}$$

¹¹Be decay channels

z	9C 126.5 MS a: 100.00% ap: 61.60%	10C 19.308 S ε: 100.00%	11C 20.364 Μ ε: 100.00%	12C STABLE 98.93%	13C STABLE 1.07%	14C 5700 Υ β-: 100.00%	15C 2.449 S β-: 100.00%	16C 0.747 S β-: 100.00% β-n: 99.20%	17C 191 MS β-: 100.00% β-n: 28.40%
5	8B 770 MS επ: 100.00% ε: 100.00%	9B 0.54 KeV 2π: 100.00% P: 100.00%	10B STABLE 10.0%	¹¹ B	12B 20.20 MS β-: 100.00% B3A: 1.58%	13B 17.33 MS β-: 100.00% β-n: 0.26%	14B 12.36 MS β-: 100.00% β-n: 6.04%	15B 10.18 MS β-: 100.00% β-n: 99.60%	16B <190 PS N
4	7Be 53.22 D ε: 100.00%	8Be 5.57 eV α: 100.00%	9Be STABL 107 %	^{10Be} 1.51E+6 Y ¹⁰ Be	^{1Be} 13.76 s ¹¹ Be	12Be 21.47 MS β-: 100.00% β-n: 0.50%	13Be 2.7E-21 S N	14Be 4.35 MS β-: 100.00% β-n: 86.00%	15Be 0.58 MeV N: 100.00%
з	6Li STABLE 7.59%	7Li STABLE 02.4J	8Li 839.9 MS β-α: 100.00% β-: 100.00%	9Li 178.3 MS β-: 100.00%	10Li N: 100.00%	11Li 8.75 MS β-: 100.00% β-n: 86.60%	12Li ≺10 NS N	13Li	
2	5He 0.60 MeV Ν: 100.00% α: 100.00%	6He 806.7 MS β-: 100.00%	7He 150 KeV N	8He 119.1 MS β-: 100.% β-n: 16.%	9He N: 100.00%	10He 300 KeV N: 100.00%	https://www.	nndc.bnl.gov/nud	at2
	3	4	5	6	7	8	9	10	N

$$\operatorname{Br}\left(^{11}\operatorname{Be} \xrightarrow{\beta^{-}}{}^{11}\operatorname{B}\right) = 97.1\%$$

$$\operatorname{Br}\left(^{11}\operatorname{Be} \xrightarrow{\beta^{-}, \alpha} {}^{7}\operatorname{Li} + {}^{4}\operatorname{He}\right) = 2.9\%$$

¹¹Be decay channels

z	9C 126.5 MS a: 100.00% ap: 61.60%	10C 19.308 S ε: 100.00%	11C 20.364 Μ ε: 100.00%	12C STABLE 98.93%	13C STABLE 1.07%	14C 5700 Υ β∹ 100.00%	15C 2.449 S β-: 100.00%	16C 0.747 S β-: 100.00% β-n: θθ.20%	17C 191 MS β-: 100.00% β-n: 28.40%
5	8B 770 MS επ: 100.00% ε: 100.00%	9B 0.54 KeV 2π: 100.00% P: 100.00%	10B STABLE 19.9%	¹¹ B	12B 20.20 MS β.: 100.00% B3A: 1.58%	13B 17.33 MS β-: 100.00% β-n: 0.28%	14B 12.36 MS β-: 100.00% β-n: 6.04%	15B 10.18 MS β-: 100.00% β-n: 99.60%	16B ≺190 PS N
4	7Be 53.22 D ε: 100.00%	8Be 5.57 eV α: 100.00%	9Be STABLE 100.%	^{1.1} 2+6 Y	^{1Be} 13.76 S ¹¹ Be	12Be 21.47 MS β-: 100.00% β-n: 0.50%	13Be 2.7E-21 S N	14Be 4.35 MS β-: 100.00% β-n: 86.00%	15Be 0.58 MeV N: 100.00%
з	6Li STABLE 7.59%	7Li STABLE 02.41%	8Li 839.9 MS β-π: 100.00% β-: 100.00%	9Li 178.3 MS β-: 100.00%	10Li N: 100.00%	11Li 8.75 MS β-: 100.00% β-n: 86.60%	12Li <10 NS N	13Li	
2	5He 0.60 MeV Ν: 100.00% π: 100.00%	6He 806.7 MS β-: 100.00%	7He 150 KeV N	8He 119.1 MS β-: 100.% β-n: 16.%	9He N: 100.00%	10He 300 KeV N: 100.00%	https://www.	nndc.bnl.gov/nud	at2
	3	4	5	6	7	8	9	10	N

Theoretical estimate for β -delayed proton emission:

$$Br(^{11}Be \xrightarrow{\beta} {}^{11}B \rightarrow {}^{10}Be + p) \approx 2 \times 10^{-8}$$

Unexplained result in ¹¹Be decays

z	9C 126.5 MS a: 100.00% ap: 61.60%	10C 19.308 S ε: 100.00%	11C 20.364 M a: 100.00%	12C STABLE 98.93%	13C STABLE 1.07%	14C 5700 Υ β-: 100.00%	15C 2.449 S β-: 100.00%	16C 0.747 S β-: 100.00% β-n: 99.20%	17C 191 MS β-: 100.00% β-n: 28.40%
5	8B 770 MS επ: 100.00% ε: 100.00%	9B 0.54 KeV 2π: 100.00% F: 100.00%	10B STABLE 10.0%	¹¹ B	12B 20.20 MS β-: 100.00% B3A: 1.58%	13B 17.33 MS β-: 100.00% β-n: 0.28%	14B 12.36 MS β-: 100.00% β-n: 6.04%	15B 10.18 MS β-: 100.00% β-n: 00.60%	16B <190 PS N
4	7Be 53.22 D ε: 100.00%	8Be 5.57 eV α: 100.00%	9Be STABLE 100.%	^{1.1} ¹⁰ Ве	13.76 S	12Be 21.47 MS β-: 100.00% β-n: 0.50%	13Be 2.7E-21 S N	14Be 4.35 MS β-: 100.00% β-n: 86.00%	15Be 0.58 MeV N: 100.00%
з	6Li STABLE 7.59%	7Li STABLE 02.41%	8Li 839.9 MS β-α: 100.00% β-: 100.00%	9Li 178.3 MS β-: 100.00%	10Li N: 100.00%	11Li 8.75 MS β-: 100.00% β-n: 86.60%	12Li ≺10 NS N	13Li	
2	5He 0.60 MeV Ν: 100.00% α: 100.00%	6He 806.7 MS β-: 100.00%	7He 150 KeV N	8He 119.1 MS β-: 100.% β-n: 16.%	9He N: 100.00%	10He 300 KeV N: 100.00%	https://www.	nndc.bnl.gov/nuda	at2
	3	4	5	6	7	8	9	10	N

Unexpectedly high number of ¹⁰Be nuclei produced in ¹¹Be decays was observed

$$\operatorname{Br}(^{11}\operatorname{Be} \to ^{10}\operatorname{Be} + ?) \approx 8 \times 10^{-6}$$

Riisager et al., ¹¹Be(βp), a quasi-free neutron decay?, PLB 732, 305 (2014)

z	9C 126.5 MS a: 100.00% ap: 61.60%	10C 19.308 S ε: 100.00%	11C 20.364 Μ ε: 100.00%	12C STABLE 98.93%	13C STABLE 1.07%	14C 5700 Υ β-: 100.00%	15C 2.449 S β-: 100.00%	16C 0.747 S β-: 100.00% β-n: θθ.20%	17C 191 MS β-: 100.00% β-n: 28.40%
5	8B 770 MS επ: 100.00% ε: 100.00%	9B 0.54 KeV 2π: 100.00% F: 100.00%	10B STABLE 10.0%	¹¹ B	12B 20.20 MS β-: 100.00% B3A: 1.58%	13B 17.33 MS β-: 100.00% β-n: 0.28%	14B 12.36 MS β-: 100.00% β-n: 6.04%	15B 10.18 MS β-: 100.00% β-n: 00.60%	16B ≺190 PS N
4	7Be 53.22 D ε: 100.00%	8Be 5.57 eV α: 100.00%	9Be STABLE 100.%	10Be	¹⁶ s	12Be 21.47 MS β-: 100.00% β-n: 0.50%	13Be 2.7E-21 S N	14Be 4.35 MS β-: 100.00% β-n: 86.00%	15Be 0.58 MeV N: 100.00%
3	6Li STABLE 7.50%	7Li STABLE 02.41%	8Li 839.9 MS β-α: 100.00% β-: 100.00%	9Li 178.3 MS β-: 100.00%	10Li N: 100.00%	11Li 8.75 MS β-: 100.00% β-n: 86.60%	12Li ≺10 NS N	13Li	
2	5He 0.60 MeV N: 100.00% π: 100.00%	6He 806.7 MS β-: 100.00%	7He 150 KeV N	8He 119.1 MS β-: 100.% β-n: 16.%	9He N: 100.00%	10He 300 KeV N: 100.00%	https://ww	vw.nndc.bnl.g	ov/nudat2
	3	4	5	6	7	8	9	10	N

Is it an undiscovered narrow resonance in ¹¹B yielding large

$$\operatorname{Br}(^{11}\operatorname{Be} \xrightarrow{\beta} {}^{11}\operatorname{B} \rightarrow {}^{10}\operatorname{Be} + p)$$

or dark decay

$$^{11}\text{Be} \rightarrow {}^{10}\text{Be} + \chi + \phi$$

Are there protons in the final state of ¹¹Be decays? This would test ALL neutron dark decay channels with:

 $937.993 \text{ MeV} < M_f < 939.064 \text{ MeV}$

CERN – ISOLDE

Are there protons in the final state of ¹¹Be decays? This would test ALL neutron dark decay channels with:

 $937.993 \text{ MeV} < M_f < 939.064 \text{ MeV}$

CERN – ISOLDE

Are there protons in the final state of ¹¹Be decays? This would test ALL neutron dark decay channels with:

 $937.993 \text{ MeV} < M_f < 939.064 \text{ MeV}$

New narrow, near-threshold resonance in ¹¹B suggested also by a numerical calculation

Okołowicz, Ploszajczak & Nazarewicz, PRL 124, 042502 (2020)

TRIUMF & MSU

Are there protons in the final state of ¹¹Be decays? This would test ALL neutron dark decay channels with:

 $937.993 \text{ MeV} < M_f < 939.064 \text{ MeV}$

 $Br(^{11}Be \to {}^{10}Be + ?) \lesssim 2.2 \times 10^{-6}$

Riisager et al., EPJ A 56 (2020) 3, 100

Ongoing beam and bottle experiments

NIST Center for Neutron Research

Ongoing beam and bottle experiments

Nagakura, N., Talk at the International Workshop on Particle Physics at Neutron Sources, ILL, Grenoble, May 2018

Ongoing beam and bottle experiments

NIST Center for Neutron Research

Add a proton detection system in bottle experiments ! UCNProBe experiment

Portal to a baryonic dark sector

(1) χ is the dark matter particle $B_{\chi} = 1$

(2) χ is the anti-dark matter particle

$$B_{\bar{\chi}} = -1$$

Dark matter capture

BF, Grinstein & Zhao, arXiv:2005.04240 [hep-ph]

Capture of χ from the DM halo by a nucleus (A,Z) leads to

$$\chi + (A, Z) \to (A+1, Z)^* \to (A+1, Z) + \gamma_c$$

Signature: cascade of photons with total energy

$$E_c = S(n) - (m_n - m_\chi)$$

Experiments:

Neutron-dark matter annihilation

Keung, Marfatia & Tseng, JHEP 09 (2019) 053

Annihilation channels

$$\bar{\chi} + n \to \gamma + \pi^0$$

in models

Experiments:

→ Super-K, DUNE, Hyper-K

More general scenario:

Davoudiasl, Morrissey, Sigurdson & Tulin, PRL 105 (2010) 211304

Connection to the XENON1T excess

Connection to the XENON1T excess

Boosted dark matter

- Kannike, Raidal, Veermae, Strumia & Teresi, arXiv:2006.10735 [hep-ph]
- BF, Sandick, Shu, Su & Zhao, arXiv:2006.11264 [hep-ph]

Natural origin of boosted dark matter: hydrogen decay

• McKeen, Pospelov & Raj, arXiv:2006.15140 [hep-ph]

Final remarks

- There are working models explaining the neutron lifetime puzzle
- Neutron can undergo dark decays with a small branching fraction

$$\frac{\Delta\Gamma_{n\to\chi+\dots}}{\Gamma_n}\ll 1\%$$

- Novel dark matter searches via nuclear capture and neutron annihilation
- Connection to other anomalies

Very wishful thinking

https://en.wikipedia.org, modified

