Neutron Dark Decay: Portal to a Baryonic Dark Sector

Bartosz Fornal

University of Utah

Workshop on Baryon and Lepton Number Violation Case Western Reserve University, July 7, 2020

In collaboration with: Benjamin Grinstein

We have a problem !

DARK MATTER

Vera Rubin

Current knowledge about the Universe

What exactly is dark matter?

What exactly is dark matter?

What exactly is dark matter?

atomic nucleus

 $\tau_n \approx 15$ min

proton

Irène Joliot-Curie James Chadwick

Neutron decay in the Standard Model

Neutron lifetime in the Standard Model

Theoretical prediction
$$
\tau_n = \frac{4908.6(1.9) \text{ s}}{|V_{ud}|^2(1+3g_A^2)}
$$
 Czarnecki, Marciano & Sirlin,
PRL 120, 202002 (2018)

PRL 120, 202002 (2018)

$$
\mathcal{M} = \frac{1}{\sqrt{2}} G_F V_{ud} g_V \left[\bar{p} \gamma_\mu n - g_A \bar{p} \gamma_5 \gamma_\mu n \right] \left[\bar{e} \gamma^\mu (1 - \gamma_5) \nu \right]
$$

Using the PDG average for g_A

$$
880.5\,\mathrm{s} < \tau_n < 886.0\,\mathrm{s}
$$

Lattice result

$$
870\,\mathrm{s} < \tau_n < 900\,\mathrm{s}
$$

Chang et al., Nature 558, 91 (2018)

$$
g_A = 1.271 \pm 0.013
$$

Bottle experiments

$$
N_n(t) = N_n(0) e^{-t/\tau_n}
$$

Fit of an exponent to decay data points

$$
\boxed{\tau_n^{\text{bottle}} = \tau_n}
$$

Source: https://www.scientificamerican.com

Beam experiments

The decay rate to protons is measured

$$
\frac{dN_p(t)}{dt} = -\frac{N_n(t)}{\tau_n^{\rm beam}}
$$

$$
\tau_n^{\rm beam} = -\frac{N_n}{dN_p/dt}
$$

Source: https://www.scientificamerican.com

If neutron decays only via beta decay

$$
n\to p+e^-+\bar\nu_e
$$

there should be the equality:

$$
\tau_n^\mathrm{beam} = \tau_n^\mathrm{bottle}
$$

Beam experiments Bottle experiments

but

$$
\tau_n^{\text{beam}} = 888.0(2.1) \,\text{s} > \tau_n^{\text{bottle}} = 879.3(0.8) \,\text{s}
$$

https://www.scientificamerican.com, modified

Beam experiments Bottle experiments

$$
\tau_n^{\rm beam} \; > \; \tau_n^{\rm bottle}
$$

$$
\tau_n^{\rm beam} = -\frac{N_n}{dN_p/dt}
$$

Beam experiments Bottle experiments

$$
\boxed{\tau_n^{\rm beam} > \tau_n^{\rm bottle}}
$$

$$
\tau_n^{\text{beam}} = -\frac{N_n}{dN_p/dt} = -\frac{N_n}{\text{Br}(n \to p + \text{anything})} \frac{N_n}{dN_n/dt}
$$

Beam experiments Bottle experiments

$$
\boxed{\tau_n^{\rm beam} > \tau_n^{\rm bottle}}
$$

$$
\tau_n^{\text{beam}} = -\frac{N_n}{dN_p/dt} = -\frac{N_n}{\text{Br}(n \to p + \text{anything})} \frac{N_n}{dN_n/dt}
$$

$$
= \frac{\tau_n^{\text{bottle}}}{\text{Br}(n \to p + \text{anything})} \ge \tau_n^{\text{bottle}}
$$

Neutron dark decay

Nuclear physics bounds

p MEAN LIFE

 $1.11.11$

A test of baryon conservation. See the "p Partial Mean Lives" section below for limits for identified final states. The limits here are to "anything" or are for "disappearance" modes of a bound proton (p) or (n) . See also the 3ν modes in the "Partial Mean Lives" section. Table 1 of BACK 03 is a nice summary.

Nuclear physics bounds

p MEAN LIFE

 $IIAIUT$

A test of baryon conservation. See the "p Partial Mean Lives" section below for limits for identified final states. The limits here are to "anything" or are for "disappearance" modes of a bound proton (p) or (n) . See also the 3ν modes in the "Partial Mean Lives" section. Table 1 of BACK 03 is a nice summary.

Nuclear physics bounds

Nuclear physics bounds – 9Be

Neutron dark decay

9Be would dark decay if

 9 Be ${}^{8}Be$ $M_{\rm (^{9}Be)} =$ $M_{\rm (8Be)} + m_n - 1.664 \text{ MeV} > M_{\rm (8Be)} + M_f$

9Be remains stable if

$$
m_n - 1.664 \text{ MeV} < M_f < m_n
$$

i.e.,937.900 MeV $< M_f <$ 939.565 MeV

Nuclear physics bounds – 9Be (and considering the instability of 8Be)

Neutron dark decay

9Be would

9Be remains stable if

i.e.,

 $m_n - 1.664 \text{ MeV} + 0.093 \text{ MeV} < M_f < m_n$

937.993 MeV $< M_f <$ 939.565 MeV

Pfutzner & Riisager, PRC 97, 042501(R) (2018)

Neutron \longrightarrow **dark particle + photon Scenario I**

Dirac fermion

$$
B_\chi=1
$$

937.993 MeV < m_{χ} < 939.565 MeV

 $0 < E_{\gamma} < 1.572 \text{ MeV}$

Baryonic dark matter

937.993 MeV < m_{χ} < 938.783 MeV

 $0.782 \text{ MeV} < E_{\gamma} < 1.572 \text{ MeV}$

DM with baryon number also in: Duerr, Fileviez Perez & Wise, PRL 110, 231801 (2013)

Neutron → dark particle + photon Scenario I

Effective Lagrangian

$$
\mathcal{L}_{1}^{\text{eff}} = \bar{n} \left(i\partial \!\!\!/ - m_{n} + \frac{g_{n}e}{8m_{n}} \sigma^{\mu\nu} F_{\mu\nu} \right) n
$$

$$
+ \bar{\chi} \left(i\partial \!\!\!/ - m_{\chi} \right) \chi + \varepsilon \left(\bar{n} \chi + \bar{\chi} n \right)
$$

$$
\mathcal{L}_{n\to\chi\gamma}^{\text{eff}}=\frac{g_n e}{8 m_n}\frac{\varepsilon}{(m_n-m_\chi)}\,\bar{\chi}\,\sigma^{\mu\nu}F_{\mu\nu}\,n
$$

Neutron dark decay rate

$$
\Delta\Gamma_{n\to\chi\gamma} = \frac{g_n^2 e^2}{128\pi} \bigg(1 - \frac{m_\chi^2}{m_n^2}\bigg)^3 \frac{m_n \,\varepsilon^2}{(m_n - m_\chi)^2}
$$

Scenario I

Model 1 (minimal)

Lagrangian

$$
\mathcal{L}_1 = \left(\lambda_q \,\epsilon^{ijk} \,\overline{u_{Li}^c} \, d_{Rj} \Phi_k + \lambda_\chi \Phi^{*i} \bar{\chi} \, d_{Ri} + \text{h.c.}\right) - M_\Phi^2 |\Phi|^2 - m_\chi \,\bar{\chi} \,\chi
$$

Mixing parameter

$$
\varepsilon = \frac{\beta \, \lambda_q \lambda_\chi}{M_\Phi^2}
$$

$$
\langle 0|\epsilon^{ijk}\left(\overline{u_{L}^{c}}_{i}d_{Rj}\right)d_{Rk}^{\rho}|n\rangle=\beta\,\left(\frac{1+\gamma_{5}}{2}\right)_{\sigma}^{\rho}\,u^{\sigma}
$$

Lattice calculation gives

 $\beta \approx 0.014 \text{ GeV}^3$

Aoki et al., PRD 96, 014506 (2017)

Scenario I

Lagrangian

$$
\mathcal{L}_1 = \left(\lambda_q \,\epsilon^{ijk} \,\overline{u_{Li}^c} \, d_{Rj} \Phi_k + \lambda_\chi \Phi^{*i} \bar{\chi} \, d_{Ri} + \text{h.c.}\right) - M_\Phi^2 |\Phi|^2 - m_\chi \,\bar{\chi} \,\chi
$$

To explain the neutron lifetime discrepancy

$$
\boxed{\Delta\Gamma_{n\to\chi\gamma}\approx\Gamma_n/100}\qquad\qquad\boxed{\frac{M_\Phi}{\sqrt{|\lambda_q\lambda_\chi|}}}\approx 200\,\text{TeV}
$$

Neutron \longrightarrow **two dark particles Scenario II**

Constraints on masses

937.993 MeV
$$
m_{\chi} + m_{\phi} < 939.565 \text{ MeV}
$$

937.993 MeV < $m_{\tilde{Y}}$

Scenario II

Model 2

 $\beta\, \lambda_q \lambda_{\tilde\chi}$

Neutron dark decay rate

$$
\Delta\Gamma_{n\to\chi\phi} = \frac{|\lambda_{\phi}|^2}{16\pi} \sqrt{f(x,y)} \frac{m_n \,\varepsilon^2}{(m_n - m_{\tilde{\chi}})^2}
$$
\n
$$
f(x,y) = [(1-x)^2 - y^2] [(1+x)^2 - y^2]^3
$$
\n
$$
x = m_{\chi}/m_n
$$
\n
$$
y = m_{\phi}/m_n
$$
\n
$$
\varepsilon = \frac{1}{2} m_{\phi}/m_{\chi}
$$

$$
\boxed{\Delta\Gamma_{n\to\chi\phi}\approx\Gamma_n/100}
$$

$$
\boxed{\frac{M_{\Phi}}{\sqrt{|\lambda_q\lambda_{\tilde{\chi}}\lambda_{\phi}|}}}\approx 300 \text{ TeV}
$$

Theoretical and experimental developments

Neutron star constraints Baryogenesis, meson dark decays Self-interacting dark sector Repulsive DM-baryon interactions Dark matter capture Connection to other anomalies Neutron-dark matter annihilation

Theory

Neutron dark decays

Nuclear dark decays

Beam and bottle measurements

Neutron star constraints

• *McKeen, Nelson, Reddy & Zhou, PRL 121, 061802 (2018), arXiv:1802.08244*

• *Baym, Beck, Geltenbort & Shelton, PRL 121, 061801 (2018), arXiv:1802.08282*

• *Motta, Guichon & Thomas, J. Phys. G 45, 05LT01 (2018), arXiv:1802.08427*

Neutron star masses < 0.8 *M*[⦿]

From observation: neutron stars with masses up to 2 M_{\odot}

Neutron star constraints

• *McKeen, Nelson, Reddy & Zhou, PRL 121, 061802 (2018), arXiv:1802.08244*

• *Baym, Beck, Geltenbort & Shelton, PRL 121, 061801 (2018), arXiv:1802.08282*

• *Motta, Guichon & Thomas, J. Phys. G 45, 05LT01 (2018), arXiv:1802.08427*

Observed neutron star masses allowed if there are:

strong repulsive self-interactions in the dark sector *~ SIDM (Spergel & Steinhardt, PRL 84, 3760 (2000))*

Model with dark sector self-interactions (1)

Neutron decay to a dark particle and a dark photon

Cline & Cornell, JHEP 07, 081 (2018)

Model with dark sector self-interactions (2)

Karananas & Kassiteridis, JCAP 09, 036 (2018)

Highlights of the model:

! **can constitute all of the dark matter in the universe; model consistent with astrophysical constraints**

solves small-scale structure problems of ACDM

Model with DM-neutron repulsive interactions

Lagrangian

$$
\mathcal{L} = \lambda_q \, \epsilon^{ijk} \, \overline{u_{Li}^c} \, d_{Rj} \Phi_k + \lambda_\chi \Phi^{*i} \overline{\tilde{\chi}} \, d_{Ri} + \lambda_\phi \, \overline{\tilde{\chi}} \, \chi \, \phi + \mu H^\dagger H \phi + g_\chi \overline{\chi} \chi \, \phi + \text{h.c.}
$$

Grinstein, Kouvaris & Nielsen, PRL 123 (2019) 091601

Other theoretical follow-ups

Neutral hadron dark decays

Barducci, Fabbrichesi & Gabrielli, PRD 98, 035049 (2018)

Neutron-mirror neutron oscillations

Berezhiani, EPJ C 79, 484 (2019); LHEP 118, 1 (2019); Tan, PLB 797, 134921 (2019); BF & Grinstein, arXiv:1902.08975

Special case of neutron dark decay with

$$
\chi=n'
$$

Other theoretical follow-ups

Neutral hadron dark decays

Barducci, Fabbrichesi & Gabrielli, PRD 98, 035049 (2018)

Neutron-mirror neutron oscillations

Berezhiani, EPJ C 79, 484 (2019); LHEP 118, 1 (2019); Tan, PLB 797, 134921 (2019); BF & Grinstein, arXiv:1902.08975

Special case of neutron dark decay with

Experiment: Neutron \rightarrow **dark matter + photon**

 χ

ORTEO

χ **Los Alamos UCN** $\mathbf n$ 0.5 Φ **UCN** Background 0.4 UCN-Background $\frac{1}{2}$
Counts/10s/2.1 keV bin
 $\frac{1}{2}$
 $\frac{1}{2}$ Capture gammas $0.782 \text{ MeV} < E_{\gamma} < 1.664 \text{ MeV}$ UCN-Background-Capture Proposed DM peak 0.1 Ω 600 800 1000 1200 1400 1600 Energy (keV) *Tang et al., PRL 121, 022505 (2018)*

https://phys.org

Experiment: Neutron \rightarrow **dark matter + photon**

https://phys.org

Limits from hydrogen dark decay $H \to \chi \nu_e$

Berezhiani, LHEP 2 (2019) 1, 118 McKeen & Pospelov, arXiv:2003.02270

McKeen & Pospelov, arXiv:2003.02270 [hep-ph]

Experiment: Neutron \rightarrow dark particle + e^+e^-

Los Alamos UCN ILL, Grenoble

Sun et al., PRC 97, 052501 (2018) Klopf et al., PRL 122, 222503 (2019)

Nuclear physics bounds – *reminder*

Neutron dark decay

9Be would dark decay if

⁹Be
\n
$$
M_{(^{9}Be)}
$$
\n
$$
M_{(^{9}Be)}
$$
\n
$$
M_{(^{8}Be)}
$$

9Be remains stable if

$$
m_n - 1.664 \text{ MeV} < M_f < m_n
$$

Nuclear dark decays

Dark decays possible in unstable nuclei with S(n) < 1.664 MeV

$$
M + m_n - S(n) > M + M_f
$$

937.993 MeV
$$
M_f < m_n - S(n)
$$

Nuclear dark decays

An example of an unstable nucleus with S(n) *<* **1.572 MeV** is 11 **Li** with $S(n)_{11}$ = 0.4 MeV that could decay via

 11 Li \rightarrow 10 Li + χ **as long as** $\left| \right. 937.993 \text{ MeV} < M_f < m_n - S_n$

Better candidate (with a halo neutron):

Pfutzner & Riisager, Examining the possibility to observe neutron dark decay in nuclei, PRC 97, 042501(R) (2018)

$$
S(n)_{\rm (^{11}Be)}=0.502\ {\rm MeV}
$$

11Be decay channels

$$
Br(^{11}Be \xrightarrow{\beta^-} {}^{11}B) = 97.1\%
$$

$$
Br(^{11}Be \xrightarrow{\beta^-,\alpha} {}^{7}Li + {}^{4}He) = 2.9\%
$$

11Be decay channels

Theoretical estimate for b**-delayed proton emission:**

$$
Br({}^{11}\text{Be} \xrightarrow{\beta} {}^{11}\text{B} \rightarrow {}^{10}\text{Be} + p) \approx 2 \times 10^{-8}
$$

Unexplained result in 11Be decays

Unexpectedly high number of ¹⁰Be nuclei produced **in 11Be decays was observed**

$$
Br(^{11}Be \to {}^{10}Be + ?) \approx 8 \times 10^{-6}
$$

Riisager et al., 11Be(βp), a quasi-free neutron decay?, PLB 732, 305 (2014)

Is it an undiscovered narrow resonance in 11B yielding large

$$
Br(^{11}Be \xrightarrow{\beta} {}^{11}B \rightarrow {}^{10}Be + p)
$$

or dark decay 11

Be
$$
\rightarrow
$$
 ¹⁰Be + χ + ϕ ³

Are there protons in the final state of 11Be decays? This would test ALL neutron dark decay channels with:

937.993 MeV < M_f < 939.064 MeV

Are there protons in the final state of 11Be decays? This would test ALL neutron dark decay channels with:

937.993 MeV < M_f < 939.064 MeV

Are there protons in the final state of 11Be decays? This would test ALL neutron dark decay channels with:

937.993 MeV < M_f < 939.064 MeV

New narrow, near-threshold resonance in 11B suggested also by a numerical calculation

Okołowicz, Ploszajczak & Nazarewicz, PRL 124, 042502 (2020)

TRIUMF & MSU

Are there protons in the final state of 11Be decays? This would test ALL neutron dark decay channels with:

937.993 MeV < M_f < 939.064 MeV

 $Br(^{11}Be \rightarrow {}^{10}Be + ?) \lesssim 2.2 \times 10^{-6}$

Riisager et al., EPJ A 56 (2020) 3, 100

Ongoing beam and bottle experiments

NIST Center for Neutron Research Research https://nat-we

Ongoing beam and bottle experiments

Nagakura, N., Talk at the International Workshop on Particle Physics at Neutron Sources, ILL, Grenoble, May 2018

Ongoing beam and bottle experiments

NIST Center for Neutron Research

Add a proton detection system in bottle experiments ! UCNProBe experiment

Portal to a baryonic dark sector

 $B_{\chi}=1$ **(1)** χ is the dark matter particle

 χ is the anti-dark matter particle **(2)**

$$
B_{\bar{\chi}}=-1
$$

Dark matter capture

BF, Grinstein & Zhao, arXiv:2005.04240 [hep-ph]

Capture of c **from the DM halo by a nucleus** *(A,Z) leads to*

$$
\chi + (A, Z) \to (A + 1, Z)^* \to (A + 1, Z) + \gamma_c
$$

Signature: cascade of photons with total energy

$$
E_c = S(n) - (m_n - m_\chi)
$$

Experiments:

DUNE, PandaX, XENON1T, … \blacksquare

$$
B_{\bar{\chi}}=-1
$$

Keung, Marfatia & Tseng, JHEP 09 (2019) 053

Annihilation channels

$$
\bar{\chi} + n \to \gamma + \pi^0
$$

in models

Experiments:

Super-K, DUNE, Hyper-K

More general scenario:

Davoudiasl, Morrissey, Sigurdson & Tulin, PRL 105 (2010) 211304

Connection to the XENON1T excess

Connection to the XENON1T excess

Boosted dark matter

- *Kannike, Raidal, Veermae, Strumia & Teresi, arXiv:2006.10735 [hep-ph]*
- *BF, Sandick, Shu, Su & Zhao, arXiv:2006.11264 [hep-ph]*

Natural origin of boosted dark matter: hydrogen decay

• *McKeen, Pospelov & Raj, arXiv:2006.15140 [hep-ph]*

Final remarks

- **There are working models explaining the neutron lifetime puzzle**
- **Neutron can undergo dark decays with a small branching fraction**

$$
\frac{\Delta\Gamma_{n\to\chi+\dots}}{\Gamma_n}\ll 1\%
$$

- **Novel dark matter searches via nuclear capture and neutron annihilation**
- **Connection to other anomalies**

Very wishful thinking

https://en.wikipedia.org, modified

