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Aim of the talk

Discuss the phenomenology of minimal extensions of 
the SM where lepton and/or baryon number are 

promoted to local symmetries 
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1. U(1)B-L

     i) Dirac   ii) Majorana neutrinos
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B - L as a local symmetry
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● In the SM, local symmetries play a crucial role. Its 
general structure is derived from:

Following the SM the B-L symmetry can be gauged

● New B-L gauge boson that can be searched for at 
colliders

                     Many authors have studied U(1)B-L
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Unbroken B-L and Dirac neutrinos
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Anomaly cancellation:

Dirac mass term:
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Unbroken B-L and Dirac neutrinos
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Anomaly cancellation:

B-L broken in units different than 2  forbids the 
Majorana mass term

What about the Majorana mass term?

Neutrinos are Dirac fermions

Dirac mass term:
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In order to give mass to the B-L gauge boson we can :

1) Unbroken B-L: Stueckelberg mechanism ZBL

2) Spontaneous symmetry breaking of B-L  ZBL

To forbid Majorana 
mass term

Unbroken B-L and Dirac neutrinos
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In order to give mass to the B-L gauge boson we can :

1) Unbroken B-L: Stueckelberg mechanism ZBL

2) Spontaneous symmetry breaking of B-L  ZBL

Unbroken B-L and Dirac neutrinos



Alexis Plascencia 9

[ATLAS ‘17]       

LEP bound:
[Alioli, Farina, 

Pappadopulo, and 
Ruderman ‘18]

ΔNeff

 [Fileviez Perez, Murgui, 
ADP ‘19]

B - L as a local symmetry
l

l

https://arxiv.org/abs/1707.02424
https://arxiv.org/abs/1712.02347
https://arxiv.org/abs/1712.02347
https://arxiv.org/abs/1712.02347
https://arxiv.org/abs/1905.06344
https://arxiv.org/abs/1905.06344
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Broken B-L and Majorana neutrinos
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Add scalar that breaks B-L in two units

Allows Majorana mass term and implementation of type-I seesaw
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LNV at the LHC

[Keung & Senjanovic ‘83]

Relying on W and neutrino mixing:
[Han & Zhang ‘06]

See slides by Richard Ruiz!

[Fileviez Perez, Han & Li ‘09]

Review: 
[Cai, Han, Li & Ruiz ‘17]

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.50.1427
https://arxiv.org/abs/hep-ph/0604064
https://indico.fnal.gov/event/44268/
https://arxiv.org/abs/0907.4186
https://arxiv.org/abs/1711.02180
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LNV at the LHC

[Keung & Senjanovic ‘83]

Relying on W and neutrino mixing:
[Han & Zhang ‘06]

See slides by Richard Ruiz!

[Fileviez Perez, Han & Li ‘09]

Review: 
[Cai, Han, Li & Ruiz ‘17]

not suppressed by the 
active-sterile neutrino 

mixing!

not suppressed by the 
active-sterile neutrino 

mixing!

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.50.1427
https://arxiv.org/abs/hep-ph/0604064
https://indico.fnal.gov/event/44268/
https://arxiv.org/abs/0907.4186
https://arxiv.org/abs/1711.02180
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We explore the freedom in the R matrix, which is parametrized by 
three complex angles

LNV at the LHC

[Casas & Ibarra ‘01]

https://arxiv.org/abs/hep-ph/0103065
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LNV at the LHC
● In the simple case with ωi=0 → R 

identity matrix
● Measuring the branching ratios of Ni can 

provide information about structure of R 
matrix

[Fileviez Perez & ADP ‘20]   see also [Fileviez Perez, Han & Li ‘09]

https://arxiv.org/abs/2005.04235
https://arxiv.org/abs/0907.4186
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LNV at the HL-LHC

● The black dots correspond to ωi=0 → 

● For the gray points we scan the real and imaginary part from -π to π
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Dirac vs Majorana
Is there an alternative way to distinguish between the scenario with 
Dirac vs Majorana neutrinos?

Measure decay width of ZBL

[Fileviez Perez & ADP ‘20]

https://arxiv.org/abs/2005.04235
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Dirac vs Majorana

●          is largest when MN > MZBL/2

● This measurement is complementary to pp→NN production

● Can provide hint on the nature of neutrinos
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Dirac neutrinos

Majorana 
neutrinos
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● The channel ZBL→ Ni Ni kinematically closed
● Unable to directly produce Ni Ni  . Nevertheless, we will have indirect 

evidence that neutrinos are Majorana fermions

Dirac neutrinos

Majorana 
neutrinos
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[Fileviez Perez & ADP ‘20]

● Both channels  ZBL→ νi νi  and  ZBL→ Ni Ni  are open
● The Majorana nature can be further confirmed by direct observation 

of LNV at colliders.

● Hard to disentangle the nature of neutrinos since we can either be in 
the case with Dirac neutrinos or the one with Majorana neutrinos and 
MN << MZBL

https://arxiv.org/abs/2005.04235


Alexis Plascencia 21

Bounds from cosmology   

● In the thermal history of the Universe, after neutrinos decouple, 
electron-positron annihilation heats up the photon plasma.

● The neutrino temperature is a bit smaller than the one of photons

[Salas Pastor ‘16]

T= 2-3 MeV (t=0.1 s) weak interactions cannot keep neutrinos 
in thermal equilibrium with electrons and positrons

and the effective number of relativistic species is:

https://arxiv.org/abs/1606.06986
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Deviation from 3 comes from- non-instantaneous decoupling, 
finite temperature corrections, etc... Review: [Dolgov ‘02]

[Planck ‘18]

Neff   effective number of relativistic species

https://arxiv.org/abs/hep-ph/0202122
https://arxiv.org/abs/1807.06209


Alexis Plascencia

Neff   effective number of relativistic species
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These interactions bring νR into thermal equilibrium in the 

early universe and they contribute to Neff

νR

νR

f

f

Unbroken B-L

Dirac neutrinos
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Neff
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νR

νR

f

f
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Decoupling T for νR

                      [Fileviez Perez, Murgui, ADP ‘19]

https://arxiv.org/abs/1905.06344
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Neff   
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[Simons Observatory: Science Goal and Forecasts ‘19]      [Borsany et al ‘16]
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Neff    

[Planck ‘18]

                      [Fileviez Perez, Murgui, ADP ‘19]

Stronger than the LEP & 
LHC bound for large 

couplings and/or 
MZ’ > 4 TeV

https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1905.06344
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Neff    

As long as νR  reach thermal equilibrium in early Universe, ΔNeff  

goes asymptotically to 

In other words, as long as Treheating > Tequil there will be a non-zero 

contribution to ΔNeff  

ΔNeff  can be sensitive to a high scale ZBL!

A very light ZBL can also thermalize and  contribute to Neff
[Abazajian & Heeck ‘19] 
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Dirac fermion as dark matter
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Introduce vector-like fermion with B-L charge

n ≠ 1  since n=1 allows mixing with neutrinos and decay
Non-renormalizable operators forbid n odd
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[Planck ‘18]

Dark Matter

Note: Partial wave unitarity requires  MDM < 240 TeV  weaker bound 
[Griest & Kamionkowski ‘90]

https://arxiv.org/abs/1807.06209
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[Planck ‘18]

Dark Matter

Xenon 
1T

Xenon 
nT

Xenon 
1T

Xenon 
nT

https://arxiv.org/abs/1807.06209
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[Planck ‘18]

Dark Matter

ΔNeff < 0.285   gives the strongest bound

https://arxiv.org/abs/1807.06209
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Dark Matter - direct detection
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2. U(1)L 

Dirac neutrinos and cosmology

34



Alexis Plascencia

Gauging lepton number
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● Promote lepton number to a local symmetry

● Need to add new fermions to cancel anomalies

In the SM the non-zero 
values are:
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Anomaly-free model
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● Neutral fermion required for anomaly cancellation

● Automatically stable from remnant U(1)→Z2 symmetry  

                            

[Duerr, Fileviez Perez & Wise ‘13]

DM Candidate 

https://arxiv.org/abs/1304.0576
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Ωh2 > 0.12

Non-resonant 
region

l

l

[Fileviez Perez, Murgui, ADP ‘19]

https://arxiv.org/abs/1905.06344
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Ωh2 > 0.12

LEP

● ZL does not couple to quarks
● Direct detection constraints can be avoided  with  sin θ  < 0.1
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Upper bound on lepton number breaking scale

ZL

All masses connected to <v>L and hence there is an upper bound for 
the full model

χ
η+

ψ+

21 TeV

34 
TeV

ψ0

Anomaly-canceling 
fermions
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Dirac neutrinos
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● Spontaneous breaking of lepton number
● Lepton number broken by 3 units:  ΔL=±3 interactions

                              Dirac neutrinos 

νR

νR

Constraints from Neff also apply to this scenario!

l

l



Alexis Plascencia 41

Neff    

[Planck ‘18]

ν

R

νR

f

f

[Fileviez Perez, Murgui, ADP ‘19]

Stronger than the LEP 
bound:

https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/1905.06344
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Next generation CMB experiments

  

42

● Telescope array in the Atacama 
Desert, Chile

● Funded
● Observing  2020’s

 
[Simons Observatory: Science Goal and Forecasts ‘19]
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Next generation CMB experiments
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● Telescope array in the Atacama 
Desert, Chile

● Funded
● Observing  2020’s

 
[Simons Observatory: Science Goal and Forecasts ‘19]

Projection for CMB Stage-IV:

[CMB-S4 Science Book ‘16]

● Array of ground-based telescopes in South Pole and Chile
● Joint NSF and DOE project
● Observing late 2020s
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Next generation CMB 
experiments could fully 
probe the parameter 
space that also explains 
thermal dark matter
 

Neff gives strongest bound

CMB-S4
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Baryogenesis in U(1)L

[Carena, Quirós, Zhang, ‘19]

These models explain dark matter and neutrino masses

Need to explain matter-antimatter 
asymmetry:

● New scalar S to induce 

1st order PT and 

CP-violation

● Chiral asymmetry for 

DM                     lepton 

asymmetry 

https://arxiv.org/abs/1908.04818
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3. U(1)B 

LHC phenomenology and dark matter

46
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Anomaly cancellation
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● Baryon number broken by 3 units:  ΔB=±3 interactions
                              No proton decay

● Need to add new fermions to cancel anomalies

Neutral fermion required for anomaly cancellation  
                            DM Candidate 

In the SM the non-zero 
values are:
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Anomaly cancellation
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[Duerr, Fileviez Perez, Wise ‘13]

For Model II see 
[ Fileviez Perez, Ohmer, Patel ‘14]

DM

https://arxiv.org/abs/1304.0576
https://arxiv.org/abs/1403.8029
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LHC bounds on leptophobic gauge boson
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● No LEP bound for this scenario
● Di-jet searches at CMS and ATLAS - Run I & II

Room for new 
gauge boson!



Results
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Ωh2 > 0.12

Unconstrained
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Upper bound on baryon number breaking scale

ZB

All masses connected to vB and hence there is an upper bound for 
the full model

χ
η+

ψ+

28 
TeV

34 
TeV

ψ0

Anomaly-canceling 
fermions
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Exotic Higgs decays
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[Fileviez Perez, Golias, Murgui, ADP ‘20]

[ATLAS & CMS  1606.02266]

https://arxiv.org/abs/2003.09426
https://arxiv.org/abs/1606.02266
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Associated Higgs Production
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[Fileviez Perez, Golias, Murgui, ADP ‘20]

https://arxiv.org/abs/2003.09426
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Conclusions
● U(1)B-L   for                         large cross-sections for LNV. For              

a                    the decay width of        can help distinguish 
between Dirac and Majorana

● The gauging of lepton and/or baryon number leads to 
interesting cosmology and collider physics

● U(1)L  neutrinos are Dirac. Next generation CMB will fully test 

these theories (with thermal DM) using ΔNeff

● U(1)B  can be at the low scale (GeV) and the LHC will probe this 
region. h→ZB ZB can have a large branching ratio

● Not overproducing DM Ωh2 ≤ 0.12 implies an upper bound on all 
these theories < 35 TeV

aaa       
54

Thank you!
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Back-up
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Model II

[Ohmer, Fileviez Perez, Patel 2014]
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Stueckelberg scenario
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The above Lagrangian is invariant under gauge transformations: 

Massive gauge boson and σ field decouples from the theory

For Abelian theories renormalizable and unitary 
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Neff   
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[Planck 2018]

Projection for CMB Stage-IV:

[CMB-S4 Science Book 2016]
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Neff   

[Hu et al 1995]
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Direct Detection

suppressed by Higgs mixing

  θ  < 0.3   for  MH2  > 200 GeV

For lighter MH2  stronger bound

[Ilnicka, Robens, Stefaniak 2018]

ZL does not couple to 
quarks

Direct detection constraints can be avoided  
with  sin θ  < 0.1

Due to axial coupling,

velocity suppressed v~10-3 
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Ωh2 > 0.12

Non-resonant 
region

l

l
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Exotic Higgs decays

62

CMS and ATLAS 
combined analysis

￼

[ATLAS & CMS  1606.02266]
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Direct Detection

Due to axial coupling,

velocity suppressed v~10-3 

Direct detection constraints can be avoided 

suppressed by Higgs mixing

  θ  < 0.3   for  MH2  > 200 GeV

For lighter MH2  stronger bound

[Ilnicka, Robens, Stefaniak 2018]


