B and L as local symmetries: Dark matter, cosmology and physics at the LHC

Alexis Plascencia

BLV 2020, July 6, 2020

Aim of the talk

Discuss the phenomenology of minimal extensions of the SM where lepton and/or baryon number are promoted to local symmetries

1. U(1)_{B-L} i) Dirac ii) Majorana neutrinos

 Z_{BL}

• In the SM, local symmetries play a crucial role. Its general structure is derived from:

 $\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y \longrightarrow \mathrm{SU}(3)_c \otimes \mathrm{U}(1)_{\mathrm{EM}}$

Following the SM the *B-L* symmetry can be gauged

• New *B-L* gauge boson that can be searched for at colliders

Many authors have studied U(1) $_{\rm B-L}$

Alexis Plascencia

In order to give mass to the *B*-*L* gauge boson we can :

- 1) Unbroken *B-L*: Stueckelberg mechanism Z_{BL}
- 2) Spontaneous symmetry breaking of *B-L* Z_{BL}

$$S_{BL} \sim (1,1,0,q_{BL})$$

$$ig|q_{BL}ig|>2$$

To forbid Majorana mass term

In order to give mass to the *B*-*L* gauge boson we can :

2) Spontaneous symmetry breaking of *B-L* Z_{BL}

$$S_{BL} \sim (1,1,0,q_{BL}) \qquad |q_{BL}|>2$$

Broken B-L and Majorana neutrinos

Add scalar that breaks B-L in two units

$$S_{BL} \sim (1,1,0,q_{BL}) \qquad q_{BL}=2$$

Allows Majorana mass term and implementation of type-I seesaw

$$egin{aligned} -y_N S_{BL} N^T C N + ext{h. c.} \subset \mathcal{L} \ M_N &= \sqrt{2} y_N \langle v_{BL}
angle \ m_
u &\simeq rac{m_D^2}{M_N} \end{aligned}$$

[Keung & Senjanovic '83]

Relying on *W* and neutrino mixing: [Han & Zhang '06]

See slides by Richard Ruiz!

[Fileviez Perez, Han & Li '09]

Review: [Cai, Han, Li & Ruiz '17]

[Keung & Senjanovic '83]

Relying on *W* and neutrino mixing: [Han & Zhang '06]

See slides by Richard Ruiz!

[Fileviez Perez, Han & Li '09]

Review: [Cai, Han, Li & Ruiz '17]

$$\sigma(q\bar{q} \to Z_{BL}^* \to N_i N_i)(\hat{s}) = \frac{g_{BL}^4}{648\pi\hat{s}} \frac{\left(\hat{s} - 4M_{N_i}^2\right)^{3/2} \left(2m_q^2 + \hat{s}\right)}{\sqrt{\hat{s} - 4m_q^2} \left(M_{Z_{BL}}^2 \Gamma_{Z_{BL}}^2 + (\hat{s} - M_{Z_{BL}}^2)^2\right)}$$

$$\Gamma(N_i \to \ell^- W^+) = \frac{g_2^2}{64\pi M_W^2} |V_{\ell i}|^2 M_{N_i}^3 \left(1 + 2\frac{M_W^2}{M_{N_i}^2}\right) \left(1 - \frac{M_W^2}{M_{N_i}^2}\right)^2$$

$$V = V_{\rm PMNS} \ m^{1/2} \ R \ M^{-1/2} \quad \text{[Casas \& lbarra '01]}$$

We explore the freedom in the *R* matrix, which is parametrized by three complex angles

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\omega_1} & s_{\omega_1} \\ 0 & -s_{\omega_1} & c_{\omega_1} \end{pmatrix} \begin{pmatrix} c_{\omega_2} & 0 & s_{\omega_2} \\ 0 & 1 & 0 \\ -s_{\omega_2} & 0 & c_{\omega_2} \end{pmatrix} \begin{pmatrix} c_{\omega_3} & s_{\omega_3} & 0 \\ -s_{\omega_3} & c_{\omega_3} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 Γ_{N_1}

 Γ_{N_2}

 Γ_{N_3}

400

600

 M_N [GeV]

800

 10^{-2}

 10^{-5}

 10^{-8}

 10^{-11}

 10^{-14}

 10^{-17}

 10^{-20}

200

 Γ [GeV]

- In the simple case with $\omega_i = 0 \rightarrow R$ identity matrix
- Measuring the branching ratios of N_i can provide information about structure of R matrix

R = 1 and NH

[GeV]

 10^{-9}

 10^{-7}

 10^{-5}

 10^{1}

 10^{3}

 10^{5}

 10^{7}

1000

 10^{-3} \mathbf{H} 10^{-1} \mathbf{H}

СŢ

 $N_{\text{events}} = \mathcal{L} \times \sigma(pp \to N_i N_i) \times 2 \times \text{BR}^2(N_i \to l^{\pm} W^{\mp}) \times \text{BR}^2(W^{\mp} \to jj)$

- The black dots correspond to $\omega_i = 0 \rightarrow V^2 \simeq m_{\nu}/M_N$
- For the gray points we scan the real and imaginary part from $-\pi$ to π

Dirac vs Majorana

Is there an alternative way to distinguish between the scenario with Dirac vs Majorana neutrinos?

Measure decay width of Z_{BL}

[Fileviez Perez & ADP '20]

Dirac vs Majorana

$$\delta\Gamma_{\nu} \equiv \frac{\Gamma_{\nu}^{D} - \Gamma_{\nu}^{M}}{\Gamma_{\nu}^{M}}$$

- $\delta \Gamma_{\nu}$ is largest when $M_N > M_{ZBL}/2$
- This measurement is **complementary** to $pp \rightarrow NN$ production
- Can provide hint on the nature of neutrinos

Alexis Plascencia

Dirac neutrinos
$$\Gamma_{\nu}^{D} = \sum_{i=1}^{3} \Gamma \left(Z_{BL} \to \nu_{i} \bar{\nu}_{i} \right) = 6g_{BL}^{2} \frac{M_{Z_{BL}}}{24\pi}$$

Dirac neutrinos
$$\Gamma_{\nu}^{D} = \sum_{i=1}^{3} \Gamma \left(Z_{BL} \to \nu_{i} \bar{\nu}_{i} \right) = 6g_{BL}^{2} \frac{M_{Z_{BL}}}{24\pi}$$

$$\begin{split} \Gamma_{\nu}^{M} &= \sum_{i=1}^{3} \Gamma \left(Z_{BL} \to \nu_{i} \nu_{i} \right) + \sum_{i=1}^{3} \Gamma \left(Z_{BL} \to N_{i} N_{i} \right) \\ &= 3g_{BL}^{2} \frac{M_{Z_{BL}}}{24\pi} + \sum_{i=1,2,3} g_{BL}^{2} \frac{M_{Z_{BL}}}{24\pi} \left(1 - \frac{4M_{N_{i}}^{2}}{M_{Z_{BL}}^{2}} \right)^{3/2} \end{split}$$
 Majorana neutrinos

$$i) \; {
m BR}(Z_{BL}
ightarrow {
m neutrinos}) \simeq 23\%$$

- The channel $Z_{BL} \rightarrow N_i N_i$ kinematically closed
- Unable to directly produce N_i N_i. Nevertheless, we will have indirect evidence that neutrinos are Majorana fermions

$ii) \; 23\% < { m BR}(Z_{BL} ightarrow { m neutrinos}) < 38\%$

- Both channels $Z_{BL} \rightarrow V_i V_i$ and $Z_{BL} \rightarrow N_i N_i$ are open
- The Majorana nature can be further confirmed by direct observation of LNV at colliders.

$$i) \; {
m BR}(Z_{BL} o {
m neutrinos}) \simeq 38\%$$

• Hard to disentangle the nature of neutrinos since we can either be in the case with Dirac neutrinos or the one with Majorana neutrinos and $M_N << M_{ZBL}$

[Fileviez Perez & ADP '20]

Bounds from cosmology

- In the thermal history of the Universe, after neutrinos decouple, electron-positron annihilation heats up the photon plasma.
- The neutrino temperature is a bit smaller than the one of photons

$$T_
u = ig(rac{4}{11}ig)^{1/3}T_\gamma$$

and the effective number of relativistic species is:

$$N_{
m eff} \equiv rac{8}{7} ig(rac{11}{4}ig)^{4/3} ig(rac{
ho_{
m rad}-
ho_{\gamma}}{
ho_{\gamma}}ig) \qquad N_{
m eff} = 3ig(rac{11}{4}ig)^{4/3} ig(rac{T_{
u}}{T_{\gamma}}ig)^4$$

T= 2-3 MeV (t=0.1 s) weak interactions cannot keep neutrinos in thermal equilibrium with electrons and positrons

$$N_{
m eff}^{
m SM}=3.045$$
 [Salas Pastor '16]

N_{eff} effective number of relativistic species

Deviation from 3 comes from- non-instantaneous decoupling, finite temperature corrections, etc... Review: [Dolgov '02]

N_{eff} effective number of relativistic species

These interactions bring V_R into thermal equilibrium in the early universe and they contribute to N_{eff}

$$\Delta N_{\text{eff}} = N_{\text{eff}} - N_{\text{eff}}^{\text{SM}} = N_{\nu_R} \left(\frac{T_{\nu_R}}{T_{\nu_L}}\right)^4 = N_{\nu_R} \left(\frac{g(T_{\nu_L}^{\text{dec}})}{g(T_{\nu_R}^{\text{dec}})}\right)^{\frac{4}{3}}$$

$$N_{eff} \qquad V_{R} \qquad I \qquad U(1)_{B-L} \qquad U(1)_{B-L} \qquad V_{R} \qquad I \qquad U(1)_{B-L} \qquad V_{R} \qquad V_{$$

I

Decoupling T for V_R

${ m U(1)}_{B-L}$

[Fileviez Perez, Murgui, ADP '19]

[Simons Observatory: Science Goal and Forecasts '19]

[Borsany et al '16]

[Fileviez Perez, Murgui, ADP '19]

 ${
m U(1)}_{B-L}$

As long as ${\it V}_{\it R}\,$ reach thermal equilibrium in early Universe, $\Delta N_{e\!f\!f}\,$ goes asymptotically to

$\Delta N_{ m eff} ightarrow 0.021$

In other words, as long as $T_{reheating}$ > T_{equil} there will be a non-zero contribution to ΔN_{eff}

 ΔN_{eff} can be sensitive to a high scale Z_{BL}

A very light Z_{BL} can also thermalize and contribute to N_{eff} [Abazajian & Heeck '19]

Dirac fermion as dark matter

Introduce vector-like fermion with *B-L* charge

 $\chi \sim (1,1,0,\dot{n})$

n ≠ 1 since n=1 allows mixing with neutrinos and decay Non-renormalizable operators forbid *n* odd

Dark Matter

Note: Partial wave unitarity requires M_{DM} < 240 TeV weaker bound [Griest & Kamionkowski '90]

$${
m U}(1)_{B-L}$$

-
$$\Omega_{\chi} h^2 = 0.1200 \pm 0.0012$$
 [Planck '18]

 ΔN_{off} < 0.285 gives the strongest bound

 $\Omega_{\chi}h^2 = 0.1200 \pm 0.0012$

25

Dark Matter

Stueckelberg $g_{BL} = 1.5$, $n_{\chi} = \frac{1}{3}$

25

[Planck '18]

Stueckelberg $g_{BL} = 2.0, n_{\chi} = \frac{1}{3}$

Dark Matter - direct detection

2. U(1) L Dirac neutrinos and cosmology

Gauging lepton number

- Promote lepton number to a local symmetry
- Need to add new fermions to cancel anomalies

 $\mathcal{A}_1\left(SU(3)^2 \otimes U(1)_L\right), \mathcal{A}_2\left(SU(2)^2 \otimes U(1)_L\right)$ $\mathcal{A}_3\left(U(1)_Y^2 \otimes U(1)_L\right), \ \mathcal{A}_4\left(U(1)_Y \otimes U(1)_L^2\right),$ $\mathcal{A}_5\left(U(1)_B\right), \ \mathcal{A}_6\left(U(1)_L^3\right).$

In the SM the non-zero values are:

$$\mathcal{A}_2=-\mathcal{A}_3=3/2$$

Anomaly-free model

 $\mathrm{U}(1)_L$

Fields	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_L$
$\Psi_L = \begin{pmatrix} \Psi_L^0 \\ \Psi_L^- \end{pmatrix}$	1	2	$-\frac{1}{2}$	$-\frac{3}{2}$
$\Psi_R = \begin{pmatrix} \Psi_R^{\vec{0}} \\ \Psi_R^{\vec{-}} \end{pmatrix}$	1	2	$-\frac{1}{2}$	$\frac{3}{2}$
η_R^-	1	1	-1	$-\frac{3}{2}$
η_L^-	1	1	-1	$\frac{3}{2}$
χ^0_R	1	1	0	$-\frac{3}{2}$
χ^0_L	1	1	0	$\frac{3}{2}$

[Duerr, Fileviez Perez & Wise '13]

- Neutral fermion required for anomaly cancellation
- Automatically stable from remnant U(1) $\rightarrow Z_2$ symmetry

Alexis Plascencia

- Z₁ does not couple to quarks
- Direct detection constraints can be avoided with $\sin \theta < 0.1$

Upper bound on lepton number breaking scale

All masses connected to $\langle v \rangle_L$ and hence there is an upper bound for the full model

Dirac neutrinos

- Spontaneous breaking of lepton number
- Lepton number broken by 3 units: $\Delta L=\pm 3$ interactions

Constraints from N_{eff} also apply to this scenario!

Next generation CMB experiments

- Telescope array in the Atacama Desert, Chile
- Funded
- Observing 2020's

 $\Delta N_{
m eff} < 0.12 ~~{
m at}~95\%\,{
m CL}$

[Simons Observatory: Science Goal and Forecasts '19]

Next generation CMB experiments

• Telescope array in the Atacama Desert, Chile

- Funded
- Observing 2020's

 $\Delta N_{
m eff} < 0.12 ~~{
m at}~95\% \,{
m CL}$

[Simons Observatory: Science Goal and Forecasts '19]

Projection for CMB Stage-IV: $\Delta N_{
m eff} < 0.06~{
m at}~95\%\,{
m CL}$

[CMB-S4 Science Book '16]

- Array of ground-based telescopes in South Pole and Chile
- Joint NSF and DOE project
- Observing late 2020s

N_{eff} gives strongest bound

Next generation CMB experiments could fully probe the parameter space that also explains thermal dark matter

Alexis Plascencia

Baryogenesis in U(1)

These models explain dark matter and neutrino masses

Need to explain matter-antimatter asymmetry:

 $\eta_{BBBN} = (5.80 - 6.60) \times 10^{-10}$ $\eta_{BCMB} = (6.02 - 6.18) \times 10^{-10}$

- New scalar S to induce
 1st order PT and
 CP-violation
- Chiral asymmetry for DM χ \longrightarrow lepton asymmetry

[Carena, Quirós, Zhang, '19]

3. U(1)_B

LHC phenomenology and dark matter

Anomaly cancellation

- Baryon number broken by 3 units: ΔB=±3 interactions
 No proton decay
- Need to add new fermions to cancel anomalies

Neutral fermion required for anomaly cancellation

DM Candidate 🚺

$$\mathcal{A}_1\left(SU(3)^2 \otimes U(1)_B\right), \quad \mathcal{A}_2\left(SU(2)^2 \otimes U(1)_B\right)$$
$$\mathcal{A}_3\left(U(1)_Y^2 \otimes U(1)_B\right), \quad \mathcal{A}_4\left(U(1)_Y \otimes U(1)_B^2\right),$$
$$\mathcal{A}_5\left(U(1)_B\right), \quad \mathcal{A}_6\left(U(1)_B^3\right).$$

In the SM the non-zero values are:

$$\mathcal{A}_2=-\mathcal{A}_3=3/2$$
 47

Alexis Plascencia

Anomaly cancellation

[Duerr, Fileviez Perez, Wise '13]

Fields	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_B$
$\Psi_L = \begin{pmatrix} \Psi_L^0 \\ \Psi_L^- \end{pmatrix}$	1	2	$-\frac{1}{2}$	$-\frac{3}{2}$
$\Psi_R = \begin{pmatrix} \Psi_R^0 \\ \Psi_R^- \end{pmatrix}$	1	2	$-\frac{1}{2}$	$\frac{3}{2}$
η_R^-	1	1	-1	$-\frac{3}{2}$
η_L^-	1	1	-1	$\frac{3}{2}$
χ^0_R	1	1	0	$-\frac{3}{2}$
χ^0_L	1	1	0	$\frac{3}{2}$

DM

For Model II see [Fileviez Perez, Ohmer, Patel '14]

LHC bounds on leptophobic gauge boson

- No LEP bound for this scenario
- Di-jet searches at CMS and ATLAS Run I & II

Alexis Plascencia

Results

50

Upper bound on baryon number breaking scale

All masses connected to $v_{\rm B}^{}$ and hence there is an upper bound for the full model

Exotic Higgs decays

[ATLAS & CMS 1606.02266]

Alexis Plascencia

Conclusions

- **U(1)**_{B-L} for $M_N \leq M_{Z_{BL}}/2$ large cross-sections for **LNV**. For $M_N > M_{Z_{BL}}/2$ the decay width of Z_{BL} can help distinguish between Dirac and Majorana
- The **gauging of lepton and/or baryon** number leads to interesting cosmology and collider physics
- **U(1)**_L neutrinos are Dirac. Next generation CMB will fully test these theories (with thermal DM) using ΔN_{eff}
- **U(1)**_B can be at the low scale (GeV) and the LHC will probe this region. $h \rightarrow Z_B Z_B$ can have a large branching ratio
- Not overproducing DM $\Omega h^2 \le 0.12$ implies an upper bound on all these theories < 35 TeV

Thank you!

Model II

Fields	$\mathrm{SU}(3)_C$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	$\mathrm{U}(1)_B$
$\Psi_L = egin{pmatrix} \Psi_L^+ \ \Psi_L^0 \ \Psi_L^0 \end{pmatrix}$	1	2	$\frac{1}{2}$	$\frac{3}{2}$
$\Psi_R = \begin{pmatrix} \Psi_R^+ \\ \Psi_R^0 \end{pmatrix}$	1	2	$\frac{1}{2}$	$-\frac{3}{2}$
$\Sigma_L = \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_L^0 & \sqrt{2}\Sigma_L^+ \\ \sqrt{2}\Sigma_L^- & -\Sigma_L^0 \end{pmatrix}$	1	3	0	$-\frac{3}{2}$
χ^0_L	1	1	0	$-\frac{3}{2}$

[Ohmer, Fileviez Perez, Patel 2014]

Stueckelberg scenario

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}F^{\mu
u} - rac{1}{2}(mZ^{BL}_{\mu} + \partial_{\mu}\sigma)(mZ^{\mu}_{BL} + \partial^{\mu}\sigma)$$

The above Lagrangian is invariant under gauge transformations:

$$\delta Z^{\mu}_{BL} = \partial^{\mu}\lambda(x) \hspace{0.5cm} ext{and} \hspace{0.5cm} \delta\sigma = -M_{Z_{BL}}\lambda(x)$$

Massive gauge boson and σ field decouples from the theory

$$egin{aligned} \mathcal{L} &= -rac{1}{4}F_{\mu
u}F^{\mu
u} - rac{m^2}{2}Z^{BL}_{\mu}Z^{\mu}_{BL} - rac{1}{2\xi}(\partial_{\mu}Z^{\mu}_{BL})^2 \ &- rac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \xirac{m^2}{2}\sigma^2 \end{aligned}$$

For Abelian theories renormalizable and unitary

$N_{\rm eff} = 2.99^{+0.34}_{-0.33} \quad \Rightarrow \quad \Delta N_{\rm eff} < 0.285,$

[Planck 2018]

Projection for CMB Stage-IV:

$\Delta N_{ m eff} < 0.06$ at 95% CL

[CMB-S4 Science Book 2016]

N_{eff}

Alexis Plascencia

Direct Detection

suppressed by Higgs mixing θ < 0.3 for M_{H_2} > 200 GeV For lighter M_{H_2} stronger bound

[Ilnicka, Robens, Stefaniak 2018]

Due to axial coupling,

velocity suppressed v~10⁻³

Direct detection constraints can be avoided with $\sin \theta < 0.1$

Exotic Higgs decays

When $M_{Z_B} \leq M_h/2$:

CMS and ATLAS combined analysis ${
m BR}(h o {
m BSM}) \le 0.34$

[ATLAS & CMS 1606.02266]

Direct Detection

suppressed by Higgs mixing θ < 0.3 for M_{H_2} > 200 GeV For lighter M_{H_2} stronger bound

Due to axial coupling,

velocity suppressed v~10⁻³

[Ilnicka, Robens, Stefaniak 2018]

Direct detection constraints can be avoided