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Motivation of CMB-HD

Rich Science from CMB-HD:
{ Dark Matter Properties from Small-Scale

Matter Power Spectrum
Number of Relativistic Species
Delensing for Primordial Gravitational Waves
Primordial Non-Gausianity
Neutrino Mass
Dark Energy
Galaxy Cluster Astrophysics
Galaxy Formation
Reionization
{ Solar and Extrasolar Planetary Studies
Synergy with Optical Lensing Surveys
{ Mapping the Transient Sky
Novel Ideas and Searches for New Physics

Inflation Dark Matter

Galaxy
Evolution

Transients Planets

For more info see 1903.03263, 1906.10134, 2002.12714  'Neelima Sehgal, Stony Brook
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Small-Scale CDM Problems?

e CDM works well on scales larger than 10 kpc,
but seems to fail on smaller scales (maybe):

 Missing Dark Matter Satellites?
e Cores vs cusps?
 Too-big to fail?

 Too much diversity?

 Data on the properties of structure on scales
below 10 kpc is not conclusive

Key Question: What do matter fluctuations look like on small-scales?
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Gravitational Lensing of the
Cosmic Microwave Background

e CMB Lensing is when
light from the primordial

CMB is bent by
iIntervening matter

e Traditionally measured to
probe large-scale
structure

* More recently, it has
been used to measure
halo-sized objects

First Measurement of CMB Lensing on Halo Scales
Madhavacheril, NS, for the ACT Collaboration
PRL, 114, 2015



Advantage of CMB Lensing to
Probe Small-Scale Structure

1. Directly sensitive to dark matter via gravitational lensing
2. Source light is at well-defined redshift
3. Properties of primordial CMB are well understood

4. Sensitive to structure at higher redshifts than other
gravitational lensing probes; this makes it more sensitive
to FDM/WDM-type models
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CMB Lensing Power Spectrum

CMB Lensing Power Spectrum
IS matter power spectrum
convolved with window
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Contrast between CDM and models that wash out

small-scale structure is larger at higher redshifts
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CMB Lensing Power Spectrum for
CDM Versus FDM/WDM
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lensing power spectrum
| While we directly measure

structure with lensing, as opposed

‘ | to using a baryonic tracer, baryons
may still suppress matter power
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But shape is different

1.) If see little deviation from pure
CDM curve, then constrain both
baryons and alternate DM models

2.) If see significant deviation, then
can potentially use shape of curve
to determine whether it is due to
baryons or alternative to CDM
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Dark Matter Constraints Not
Degenerate with Neutrino Mass

CMB-S4 Science Book
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CMB lensing is known for its
potential to constrain the
sum of the neutrino masses
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Alternative DM models of
Interest suppress power on
much smaller scales
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Dark Matter Constraints Not
Degenerate with Neutrino Mass
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Dark Matter Forecasts Using
Ultra-Small-Scale CMB Lensing
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8-sigma preference for FDM over CDM

Ho Nam Nguyen, NS, Mathew Madhavacheril, 2019, PRD |
NS et al., 2019, arXiv:1903.03263 Neelima Sehgal, Stony Brook



Instrument Path

Two new 30-meter mm-wave telescopes in Atacama Desert
with total sensitivity 3 times deeper than CMB-S4 == CMB-HD

Each telescope holds 800,000 detectors (200,000 pixels);
Survey duration = 7.5 years

Survey is over half the sky; Cost = 1 billion dollars
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CMB-HD Probe of Light Particles

Table 1: Summary of CMB-HD key science goals in fundamental physics

Science Parameter Sensitivity
Dark Matter S/N: Slgnlﬁcance in Differentiating FDM/W DM from CDM* S/N =8
Inflation fni,: Primordial Non-Gaussianity® o(fnn) = 0.26
Inflation Ajens: Residual Lensing B-modes? Ajens = 0.1

NS et al. 2019, CMB-HD APC White Paper for Astro2020 Decadal (arXiv:1906.10134)
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Summary

Key question: what do matter fluctuations look like on small
scales?

Multiple techniques to measure this have been proposed,
each with different challenges and systematics

Another complementary, potentially powerful technique, with
different systematics, is to use ultra-deep, high-resolution
CMB lensing to measure the matter power spectrum

Requires two 30-meter mm-wave telescopes with total
sensitivity 3 times deeper than proposed CMB-S4

Would open new frontier of mm-wave observations

Good motivation for future ground-based CMB experiment,
i.,e. CMB-HD (see http://cmb-hd.org for more info)
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