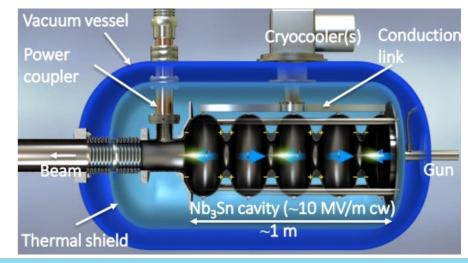


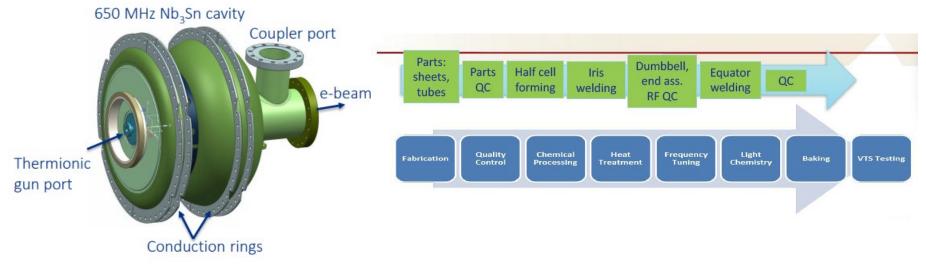
SRF cavity testing fixture and HOM analysis

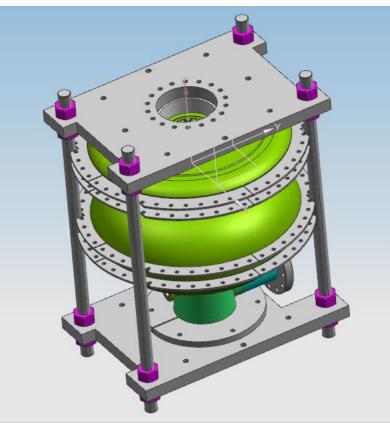
James Griggs, University of Kentucky Internship Final Talk 3 August 2020

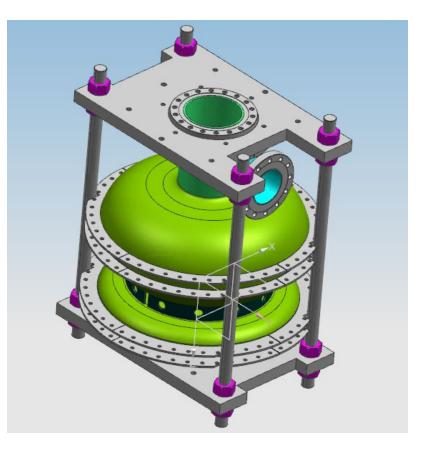
Introduction


- Junior Electrical Engineering student at the University of Kentucky
- 2nd year returning SIST intern working on a project at IARC(Illinois Accelerator Research Center)
- Supervisors: Michael Geelhoed, Ram Dhuley

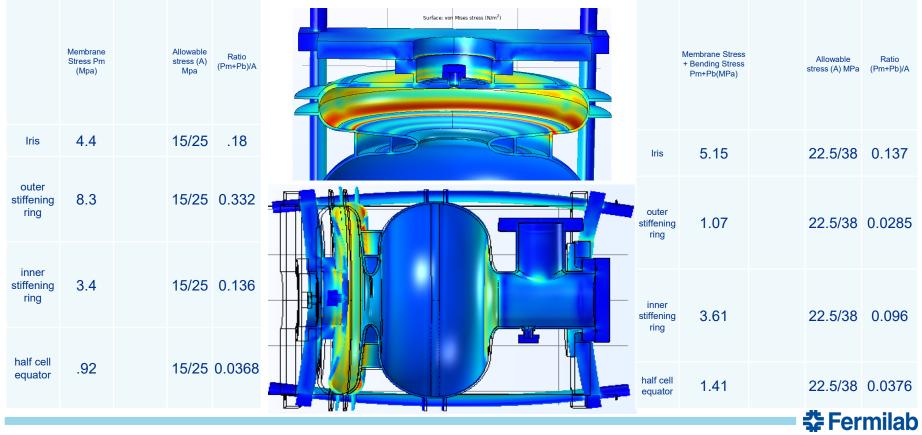
IARC accelerator program

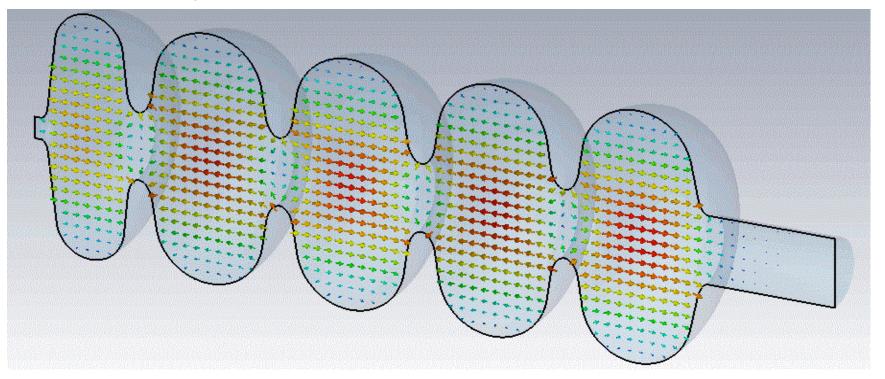

- Two types: normal conducting and superconducting accelerators
- Superconducting accelerators are energy efficient but need Liquid Helium for operation.
- Liquid helium is operationally complex and expensive.
- IARC is developing a cryogen free accelerator for industrial applications.


Engine of the accelerator


• During fabrication, transportation and testing, the cavity will have varying pressures both internally and externally.

‡ Fermilab

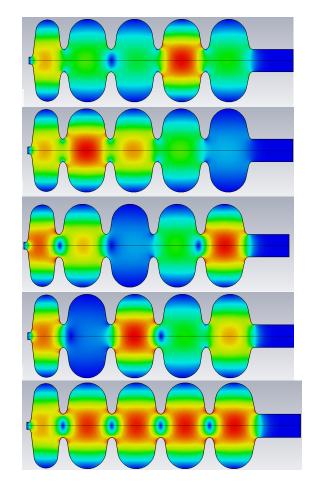

Fixture Design Process


Fixture Design Results

HOM Analysis

7

• How does a cavity work?



HOM analysis

Each cell has its own resonate frequency

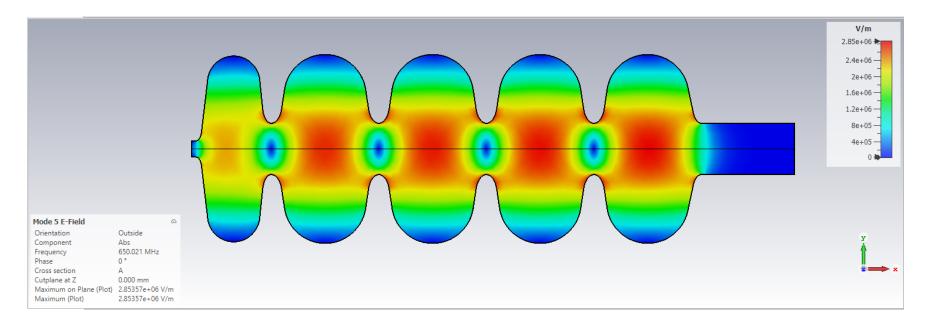
- Operating frequency of 650MHz
- Multiples of the fundamental frequency, such as 1300MHz and 1950MHz

■ HOM analysis

• What did I have to do?

Frequency (MHz)	R/Q (Ω)	error	
644.942	8.480229	3.35E-08	
646.09	9.386036	3.72E-08	
647.862	10.57334	5.37E-08	
649.405	10.84468	5.10E-08	
650.021	657.3929	6.47E-08	

‡Fermilab


HOM analysis

Frequency(MHz)	R/Q(Ω)	error
644.942	8.480229	3.35E-08
646.09	9.386036	3.72E-08
647.862	10.57334	5.37E-08
<mark>649.405</mark>	<mark>10.84468</mark>	5.10E-08
<mark>650.021</mark>	<mark>657.3929</mark>	<mark>6.47E-08</mark>
1185.499	3.126159	7.53E-08
1188.923	2.072631	9.06E-08
1193.714	45.75199	1.04E-07
1198.032	133.8583	1.23E-07
1376.733	0.552395	3.91E-07
1381.654	0.530997	3.75E-07
1389.034	0.677806	5.03E-07
1396.003	0.355496	7.01E-07
1415.581	23.74861	5.61E-08
1532.955	24.75373	1.34E-07
1761.69	4.744791	4.61E-07
1774.985	4.491849	9.38E-07
1795.08	0.122324	2.85E-07
1815.592	0.024954	1.04E-07
1902.883	3.486004	9.74E-08
1905.529	1.406817	1.44E-07
1906.921	30.95568	1.29E-07
2012.885	8.554	5.17E-07
2030.612	3.930114	7.28E-07
2055.034	2.386919	6.66E-07
2083.673	13.40303	7.76E-07
2109.417	16.16926	3.31E-07
2120.488	35.73229	4.25E-07
2285.557	19.81638	1.06E-06
2341.627	0.99798	1.03E-06

■ HOM analysis

This was the main operating frequency with the highest R/Q

Conclusion

- Huge thank you to Michael Geelhoed, Ram Dhuley, and the SIST program.
- Stay safe!

