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Abstract: With the development of the Deep Underground Neutrino Experiment (DUNE)
and Tokai-to-Hyper-Kamiokande (T2HK), we are entering the era of high-precision neutrino
measurements. The colossal output of data from DUNE, plus the current data from several
other neutrino experiments, will require a fast and efficient method of testing our BSM
models in event generators. However, current methods for implementing a BSM theory in
the event generators are prone to errors and time consuming. We propose a novel program
capable of automatically calculating the leptonic tensor for a given BSM Lagrangian. This
program utilizes the Universal FeynRules Output (UFO) format, the Lark package and
the Berends-Giele recursive relations to produce leptonic tensors that can be automatically
implemented in several neutrino event generators, including those of DUNE. We compare
the results of our algorithm with analytic calculations for e+e− → µ+µ−, e−µ− → e−µ−

and e+e− → e+e−, obtaining percentage deviations of order 10−14.
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1 Introduction

The Standard Model (SM) is our most accurate physics theory capable of describing three
of the four known fundamental forces of nature along with their corresponding particles.
However, the SM is an incomplete theory as it fails to explain gravity and a variety of
other phenomena. For example, the SM predicts that only left-handed massless neutrinos
exist, contradicting experimental evidence of massive neutrinos via neutrino oscillations
as reported by the Super-Kamiokande [16], SNO [8] and KamLAND [15] experiments.
Since then, several experiments have found anomalies regarding the behavior of neutrino
oscillations at short-baselines, hinting at the existence of a fourth type of neutrino that
is sterile to any SM interactions [4–7, 14, 17, 22]. To explain the phenomena of neutrino
oscillations, the origin of its mass, the existence of a possible sterile neutrino and other
interesting experimental evidence, scientists develop Beyond the Standard Model (BSM)
theories. However, many BSM processes are too complex to be evaluated by hand. Instead,
we rely on event generators such as Genie [9], NuWro [19], NEUT [20], and GiBUU [11, 23]
to obtain predictions that we can then compare to experimental data.

Within the next decade, we are entering an era of neutrino high-precision studies.
The neutrino community will be enriched with colossal amounts of data coming from the
Deep Underground Neutrino Experiment (DUNE) [3] and the Tokai-to-Hyper-Kamiokande
(T2HK) [1] collaborations. The unprecedented number of neutrino events coming from
these two experiments, plus the data that we already have from experiments such as Mi-
croBooNE [2], will allow for the testing of several BSM theories. However, the current
method of manually implementing a BSM theory into an event generator is inadequate.
The manual implementation process is prone to errors due to the different code conventions
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of each event generator which inevitably lead to human errors, and is time-consuming given
that the user has to repeat all the work for each BSM model. Due to these setbacks and
because of the large number of theories to be tested, this current process becomes infea-
sible. Instead, we propose an algorithm that automatically calculates the leptonic tensor
of any BSM theory given the Lagrangian. Separating the squared amplitude into its lep-
tonic and hadronic tensor components allows us to focus on the effects of the BSM theory
on the leptonic tensor. We do not focus on calculating the hadronic tensor because event
generators can accomplish that within their program, and we expect any BSM effects to
be mainly in the leptonic tensor, not on the hadronic tensor. Moreover, our algorithm
can be easily interfaced to several neutrino event generators. The program relies on the
Universal FeynRules Output (UFO) file [13] as well as the Lark package [24] and the
Berends-Giele algorithm [10]. Before we dive into the details of the program, let us review
the process of splitting an amplitude into its leptonic and hadronic tensors.

1.1 Decay Width and Cross Section

Among the most common observables measured in particle physics experiments are those
related to the decay width (Γ) of a particle and the cross section (σ) of a process. The
decay width indicates the probability per unit time that a particle of a specific kind decays.
Meanwhile, the cross section tells us about the effective (cross section) area of a particle B
when a particle A hits it. Both quantities give us a sense of how likely an event (whether
a decay or a scattering) is to occur. We can calculate these observables following Fermi’s
Golden Rule for the decay width:

Γ(A1 → B1B2 · · ·Bn) =
S

2mA

∫
dΠn|Mtot|2 (1.1)

and the cross section:

σ(A1A2 → B1B2 · · ·Bn) =
S

2
√
λ(s, ,m2

A1
,m2

A2
)

∫
dΠn|Mtot|2 (1.2)

where |Mtot|2 is the square of the total amplitude, λ(s,m2
A1
,m2

A2
) = s2 + m4

A1
+ m4

A2
−

2(sm2
A1

+m2
A1
m2
A2

+ sm2
A2

) is the Källén function, S is a symmetry factor and dΠn is the
n−dimensional phase space given by:∫

dΠn =

∫
(2π)4δ(4)

(∑
i

pAi −
n∑
i=1

pBi

)
n∏
j=1

1

2Ej

d3 ~pj
(2π)3

(1.3)

As we can see from Eqs. 1.1 and 1.2, the decay width Γ and the cross section σ are
proportional to the squared amplitude |Mtot|2. Therefore, calculating this amplitude is
necessary for obtaining the aforementioned observables.

1.2 Lagrangian and Feynman Diagrams

The Lagrangian L contains all the information about the particles and interactions of a
theory. It is closely related to the action (S) and the least action principle (δS =

∫
d4xδL) of
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field theory. Quantum Electrodynamics (QED) is the quantum field theory that governs the
electromagnetic interactions via the exchange of the photon γ gauge boson. Its Lagrangian
is given by:

LQED = −1

4
FµνF

µν +
∑

all fermions

ψ̄f iγ
µ∂µψf −mf ψ̄fψf +Aµj

µ
f (1.4)

where ψf (ψ̄f ) is the fermion (antifermion) field operator, Aµ is the photon field operator,
Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor, jµf = −eQf ψ̄fγµψf is the
electromagnetic current, and γµ are the gamma matrices that satisfy the anticommutation
relations {γµ, γν} = γµγν + γνγµ = 2gµνI4. For the electromagnetic processes that we are
dealing with, we need to identify the term that represents the interaction of two fermions
(e.g. e−e+) and the photon (γ). In Eq. 1.4, the term for a given fermion f corresponds to:

− eQfAµψ̄fγµψf (1.5)

since we have the photon and the two fermion field operators. The corresponding interaction
vertex of the photon with these two fermions would then be −ieQfγµ. This is one of the
so-called Feynman rules of QED.

A Feynman diagram is a pictorial representation of a term in the perturbative expansion
of the amplitudeMtot in powers of αEM = e2

4π , the electromagnetic coupling constant.

Mtot =
∑

First-order

α0M0 +
∑

Second-order

α1M1 + · · · (1.6)

Note that M0 contains the minimum number of α’s required for the process to occur,
and this could not necessarily be proportional to α0. For this work, we restrict ourselves
to tree-level (i.e. first-order) diagrams; that is, those diagrams with the lowest order in
α. An example of a Feynman diagram is given in Fig. 1 for the e+e− → µ+µ− process
via the exchange of a photon. A process can have more than one Feynman diagram at
tree-level, in which case the Feynman diagram amplitudes are added before squaring (i.e.
|Mtot|2 = |

∑
i
Mi|2.) The Feynman rules to calculate amplitudes are obtained from the

Lagrangian; one example would be the rule for the interaction of two fermions with a photon
given above. From now on, we drop the subscript tot in the amplitude.

1.3 Hadronic and Leptonic Tensor

For neutrino interactions, neglecting double boson exchange (which is reasonable consider-
ing the uncertainties associated with the nuclear effects), we can always express the squared
amplitude as:

|M|2 = LµνH
µν (1.7)

where Lµν is the leptonic tensor and Hµν is the hadronic tensor. To illustrate how |M|2

can be split into these tensors, we perform the calculation for e−N → e−N , where N is an
atomic nucleus.

First, let us consider the simpler process e−µ− → e−µ− with Feynman diagram given
in Fig. 2. Here, we can see that the diagram is composed of an upper e− part and a lower
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Figure 1. Feynman diagram for s-channel process e+e− → µ+µ−.

Figure 2. Feynman diagram for t-channel process e−µ− → e−µ−. Diagram is decomposed into
the electron leptonic tensor Lµν,e− and the muon leptonic tensor Lµνµ− . Labeling corresponds to
e−in : 1, µ−

in : 2, e−out : 3, µ−
out : 4.

µ− part. This decomposition corresponds to the electron leptonic tensor, Lµν,e− , and the
muon leptonic tensor, Lµν

µ− , respectively. The process e
−µ− → e−µ− only has one Feynman

diagram at tree-level, so the total amplitude is just the amplitude corresponding to this
Feynman diagram. For the calculation of the amplitude, let us first label each external
particle as follows: e−in : 1, µ−in : 2, e−out : 3, µ−out : 4.

The amplitude (for given four-momenta and spin) is given by:

M =
〈
e−(p3, s3) | jµ(0) | e−(p1, s1)

〉 igµν
(p1 − p3)2

〈
µ−(p4, s4) | jν(0) | µ−(p2, s2)

〉
(1.8)

where jµ(0) is the electromagnetic current as given in Eq. 1.4, gµν is the metric tensor, and
pi, si are the particle’s four-momentum and spin respectively. Replacing the current into
Eq. 1.8 and using the canonical rules, we get the following:

M =
ie2

(p1 − p3)2
[ūe−(~p3, s3)γµue−(~p1, s1)]

[
ūµ−(~p4, s4)γµuµ−(~p2, s2)

]
(1.9)
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The complex conjugate of the amplitude would be given by:

M∗ =
−ie2

(p1 − p3)2
[ūe−(~p1, s1)γµue−(~p3, s3)]

[
ūµ−(~p2, s2)γµuµ−(~p4, s4)

]
(1.10)

The square amplitude (for given momenta and spin) would be the productMM∗. However,
we need to average over the inital-state spins (1

4

∑
s1,s2

) and sum over all possible final-state
spins (

∑
s3,s4

). We then have:

|M|2 =
e4

(p1 − p3)4

1

4

∑
s1,s2,s3,s4

[ūe−(~p3, s3)γµue−(~p1, s1)] [ūe−(~p1, s1)γµue−(~p3, s3)]×

[
ūµ−(~p4, s4)γµuµ−(~p2, s2)

] [
ūµ−(~p2, s2)γµuµ−(~p4, s4)

] (1.11)

Using the spin-sum relations for Dirac spinors1, the Dirac equation relations2 and the trace
relations3, we obtain the following result:

|M|2 =
4e4

(p1 − p3)4

[
p3µp1ν + p3νp1µ + (m2

e − p1 · p3)gµν
] [
pµ4p

ν
2 + pν4p

µ
2 + (m2

µ − p2 · p4)gµν
]

(1.12)
Notice that the first term only depends on the electron momenta and the second term only
depends on the muon momenta. Let us define the tensors:

Lµν,e− =
2e2

(p1 − p3)2

[
p3µp1ν + p3νp1µ + (m2

e − p1 · p3)gµν
]

(1.13a)

Lµν
µ− =

2e2

(p2 − p4)2

[
pµ4p

ν
2 + pν4p

µ
2 + (m2

µ − p2 · p4)gµν
]

(1.13b)

recalling that, by conservation of four-momentum, (p1− p3) = (p2− p4). Our final squared
amplitude is then expressed as:

|M|2 = Lµν,e−L
µν
µ− (1.14)

Let us now examine the process e−N → e−N . The Feynman diagram for this interaction
is given in Fig. 3. As we can see, the diagram is very similar to that in Fig. 2. In fact,
the upper electron part is the same for both cases. When calculating the amplitude for
this process, we will obtain one term that only depends on the electron momenta and one
term that only depends on the nucleus momenta. Depending on the energy, the electron
may scatter off of a proton, a neutron or the nucleus itself. At high enough energies, it
can scatter off of the partons inside the protons and neutrons. Since the interaction of
the photon with the nucleus depends on complex nuclear physics and nuclear form factors,
and on the energy of the interaction, we will simply denote this second term by Hµν

N , the
hadronic tensor. We will leave the complex nuclear physics to the neutrino event generators.

1 ∑
s=±1/2

uf (~p, s)ūf (~p, s) = /p+mf

2(/p−mf )uf (~p, s) = ūf (~p, s)(/p−mf ) = 0

3Tr[γµ] = 0, Tr[odd number of γµ] = 0, Tr[γµγν ] = 4gµν , Tr[γµγνγσγρ] = 4(gµνgσρ − gµσgνρ + gµρgνσ)
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Figure 3. Feynman diagram for t-channel process e−N → e−N . Diagram is decomposed into
the electron leptonic tensor Lµν,e− and the nucleus hadronic tensor Hµν

N . Labeling corresponds to
e−in : 1, Nin : 2, e−out : 3, Nout : 4.

Thus, similarly to Eq. 1.14, the squared amplitude for the process e−N → e−N is given
by:

|M|2 = Lµν,e−H
µν
N (1.15)

where Lµν,e− = 2g2

(p1−p3)2

[
p3µp1ν + p3νp1µ + (m2

e − p1 · p3)gµν − iεµναβpα1 p
β
3

]
. Notice that

we have added a term to Lµν,e− that did not appear in Eq. 1.13a. For the case of the
photon, the extra term cancels out in Eq. 1.14 because the photon couples equally to both
left- and right-handed particles. However, if instead of a photon, we had had a Z boson,
which discriminates between left- and right-handed particles, the extra term would not
have cancelled out. Here we are talking about a general interaction between the leptonic
and hadronic tensors, therefore in Eq. 1.15, we have decided to include the extra term for
generality.

2 Methods

Now that we reviewed how to split a squared amplitude into its leptonic and hadronic tensor
components, we can dive into the details of our program.

2.1 Universal FeynRules Output

Given a BSM Lagrangian, we utilize the FeynRules Mathematica package to calculate the
vertices of a theory and store its information [12]. This output from FeynRules can be
interfaced and exported as a Universal FeynRules Output (UFO) [13] file, which contains
all the necessary information of the theory encoded into Python modules. More importantly,
the UFO format is designed to be agnostic. That is, the program does not make any prior
assumptions on the different Lorentz and color structures allowed in the theory as well as
on the number of particles. Because of this lack of assumptions, the UFO file also allows for
a larger compatibility with event generators, thus making it ‘universal’.
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As part of this compatibility, the UFO file stores the information of the theory as in-
stances of Python classes. In particular, all the instances of particles, parameters, Lorentz
and color structures, couplings and vertices are stored in their own Python module, ready
to be interfaced with computer codes. However, these objects are stored as strings that
represent mathematical objects. For example, the electromagnetic vertex for e+e− annihi-
lation

ieγµ (2.1)

would be stored as:

V_77 = Vertex(name = ’V_77’,
particles = [ P.e__plus__ , P.e__minus__ , P.a ],
color = [ ’1’ ],
lorentz = [ L.FFV1 ],
couplings = {(0,0):C.GC_3})

with Lorentz structure

FFV1 = Lorentz(name = ’FFV1’,
spins = [ 2, 2, 3 ],
structure = ’Gamma (3,2,1)’)

and coupling

GC_3 = Coupling(name = ’GC_3’,
value = ’-(ee*complex (0,1))’,
order = {’QED’:1})

As we can see in the attributes color for the vertex class, structure for the Lorentz
class and value for the coupling class, the instances are strings symbolizing mathematical
expressions. In particular, we have:

‘1’ = I, ‘Gamma(3,2,1)’ = (γµ3)i2,i1 , ‘-(ee*complex(0,1))’ = −ie.

To transform these Python strings into useful mathematical objects with which we can
perform calculations, we utilize the Lark package.

2.2 Lark Package

The Lark package is a parser in Python compatible with most programming and natural
languages [24]. For this project, we developed a Lark grammar for the UFO output strings,
and a Python module containing the classes that would mathematically represent these
strings. For the case of ‘Gamma(3,2,1)’, we have for example:

’Gamma (3,2,1)’:
Tensor ([[[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]

[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[ 1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]]
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[[ 0.+0.j 0.+0.j 0.+0.j 1.+0.j]
[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j -1.+0.j 0.+0.j 0.+0.j]
[-1.+0.j 0.+0.j 0.+0.j 0.+0.j]]

[[ 0.+0.j 0.+0.j 0.+0.j -0.-1.j]
[ 0.+0.j 0.+0.j 0.+1.j 0.+0.j]
[ 0.+0.j 0.+1.j 0.+0.j 0.+0.j]
[-0.-1.j 0.+0.j 0.+0.j 0.+0.j]]

[[ 0.+0.j 0.+0.j 1.+0.j 0.+0.j]
[ 0.+0.j 0.+0.j 0.+0.j -1.+0.j]
[-1.+0.j 0.+0.j 0.+0.j 0.+0.j]
[ 0.+0.j 1.+0.j 0.+0.j 0.+0.j]]],

(Index(3, True), Index(2, False), Index(1, False)))

which is a Tensor object with Lorentz (True) and spin (False) indices that we have defined.
Here we use the Weyl Representation of the γ matrices. Our grammar is able to deal with
all the Lorentz and color structures, as well as with parameters and couplings. Now that
we have all the information available in mathematical objects, we proceed to calculate the
squared amplitudes.

2.3 Berends-Giele Recursive Relations

For the calculation of the amplitudes, we utilize the Berends-Giele recursive relations [10].
This algorithm recursively breaks down each Feynman diagram into currents Jαi that act
as building blocks. Because of its nature, the Berends-Giele recursive relations allow us
to recycle diagrams’ components in different calculations, thus significantly increasing the
efficiency of the program and its speed. The program brings down the computational scaling
from O(n!) to O(en). The Berends-Giele relations were initially proposed for color-ordered
multi-parton amplitudes for n−gluons [10]. Since then, the algorithm has been extended to
deal with 3−point vertices (not just gluons) implemented in the matrix-element generator
Comix [18] and further generalized to deal with n−point vertices at tree-level [21]. In this
work, we implemented only 3− and 4−point vertices. For all renormalizable field theories,
these are all the allowed vertices.

The Berends-Giele current for a 3−point vertex is given by the following expression:

Jαi (π) = Pi(π)
∑
V j,ki

∑
{π1,π2}∈P2(π)

S(π1, π2)V j,k
i (π1, π2)Jβj (π1)Jρk (π2) (2.2)

where π is a set of N particles, π1, π2 are set partitions of π, Pi(π) is a propagator term,
Jβj (π1) and Jρk (π2) are the currents adjacent to Jαi and for given partitions π1, π2, V

j,k
i

is the vertex connecting these three currents, and S(π1, π2) is a symmetry factor for the
corresponding set partition of π [18]. The sum is over all set partitions of π into π1, π2

and for all the existing 3−point vertices of the currents. The current of a single external
particle is its wavefunction. A pictorial representation of this current can be found in Fig.
4 for a photon-muon vertex.
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Figure 4. Pictorial color-coded representation of the Berends-Giele recursive relations’ current
Jαi . This case represents the current for a photon-muon vertex. In this case, π = {µ−, µ+} and
π1 = {µ+}, π2 = {µ−}.

Figure 5. Schematic of the recursive calculation of an amplitudeM(π) following the Berends-Giele
process. The amplitude is recursively broken down into current Jµ1 and consequent sub-currents
Jν2 , J

α
3 , etc.

With the expression for the current given in Eq. 2.2, we calculate the amplitude for a
set π of N particles as follows:

M(π) = Jαn (π) · 1

Pn̄(π \ n)
· Jαn̄ (π \ n) (2.3)

whereM(π) is the amplitude for the set π, Jαn (π) is the corresponding current for particle
n, n̄ denotes reversed particle properties (e.g. opposite momentum, particle type, helicity,
etc.), Pn̄(π \ n) is the propagator term for the set of particles π \ n and Jαn̄ (π \ n) is the
current following the convention of n̄ for the set π \n. The algorithm breaks each Feynman
diagram into currents with corresponding sub-currents. The end point of the recursion is
when the algorithm finds an external particle, at which point the current is decomposed
into the particle’s wavefunction. A schematic of the recursive process for the amplitude
calculation is given in Fig. 5, and an example for e+e− → µ+µ− can be found in Fig. 6
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Figure 6. Example of recursive calculation of an amplitudeM(π) for the process e+e− → µ+µ−.
The algorithm breaks down each Feynman diagram until it reaches external particle currents.

As can be deduced from Figs. 5 and 6, one important advantage of this method is that
we can reuse the currents for other Feynman diagram calculations within a given process.

3 Results and Discussion

To test our program, we calculated the squared amplitudes |M|2 for three different Standard
Model (e+e− → µ+µ−, e−µ− → e−µ−, e+e− → e+e−) processes. These calculations serve
as validation results to show that we can expand our program to compute more complex
processes or test BSM theories.

The analytic squared amplitudes of these SM processes are given in terms of the Man-
delstam variables. Let us label each 2-to-2 process by 12→ 34. Then we define:

s = (p1 + p2)2 = (p3 + p4)2 (3.1a)

t = (p1 − p3)2 = (p2 − p4)2 (3.1b)

u = (p1 − p4)2 = (p2 − p3)2 (3.1c)

For illustrative purposes, let us calculate the analytic solution for e−µ− → e−µ−. Recall
Eq. 1.12. First, notice that (p1 − p3)4 = t2. For our calculations, we are dealing with
high enough energies (i.e. E � me,mµ) so that we can neglect the particles’ masses. Our
amplitude in Eq. 1.12 is then:

|M|2 =
4e4

t2
[p3µp1ν + p3νp1µ − p1 · p3gµν ] [pµ4p

ν
2 + pν4p

µ
2 − p2 · p4g

µν ]

|M|2 =
8e4

t2
[(p3 · p4)(p1 · p2) + (p3 · p2)(p1 · p4)]

Notice that, because we are assuming me = mµ = 0, we also get:

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1 · p2 = m2
e +m2

µ + 2p1 · p2 = 2p1 · p2 = 2p3 · p4

u = (p1 − p4)2 = p2
1 + p2

4 − 2p1 · p4 = m2
e +m2

µ − 2p1 · p4 = −2p1 · p4 = −2p2 · p3

and:

s2 = 4(p1 · p2)(p3 · p4)

u2 = 4(p1 · p4)(p2 · p3)
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Then the initial-state spin-averaged and final-state spin-summed amplitude is:

|M|2 = 2e4 s
2 + u2

t2
(3.4)

The analytic solutions for spin-summed (without the 1
4 factor) squared amplitudes would

then be: ∣∣M(e+e− → µ+µ−)
∣∣2 = 8e4

(
t2 + u2

s2

)
(3.5a)

∣∣M(e−µ− → e−µ−)
∣∣2 = 8e4

(
s2 + u2

t2

)
(3.5b)

∣∣M(e+e− → e+e−)
∣∣2 = 8e4

(
u2 + s2

t2
+ 2

u2

st
+
u2 + t2

s2

)
(3.5c)

We calculate these amplitudes in our algorithm.
The results for e+e− → µ+µ− can be found in Fig. 7, for e−µ− → e−µ− can be found

in Fig. 8 and for e+e− → e+e− can be found in Fig. 9. For these processes, we computed
the analytic and computational squared amplitudes for 500 equally-spaced values of cos(θ),
the cosine of the polar angle θ, in the range [−1, 1). Throughout the calculations, the value
of the azimuthal angle φ was randomly selected to be φ = 0.34 for e+e− → µ+µ−, φ = 2.67

for e−µ− → e−µ−, and φ = 0.00 for e+e− → e+e−. Note that the amplitudes do not
depend on the choice of azimuthal angle. The left panels of Figs. 7, 8 and 9 show the
computational and analytic amplitudes plotted versus cos(θ), where the computational and
analytic amplitudes overlap almost perfectly. On the right panels, we plotted the percentage
deviations of the amplitude with respect to the analytic solution (i.e. δ|M|2

|M|ana
.) As could

be deduced from the left panels, the percentage deviations are minimal and of order 10−14,
with the largest deviations at the beginning and end of the cos(θ) range. These deviations
are most likely due to the numerical precision of the calculations. Therefore, in the corners
of the phase space, the numerical deviations are larger. These deviations are close to the
machine precision error which means our results are accurate to an acceptable precision
without need to worry for the deviations.

4 Conclusion and Future Steps

In this work, we coded a program that automatically calculates the squared amplitude
of Standard Model processes. For the development of our algorithm, we utilized the
Universal FeynRules Output (UFO) [13] file format to obtain the relevant information
of the theory, and relied on the Lark package [24] and the Berends-Giele recursive rela-
tions [10] for 3− and 4−point vertices for proper parsing and computation of the squared
amplitudes. Validation tests for the SM processes e+e− → µ+µ−, e−µ− → e−µ−, and
e+e− → e+e− are presented in Sec. 3 and show promising results, with percentage devia-
tions (10−14) of similar magnitude to machine precision errors. Future steps for this project
involve transforming the squared amplitude into a leptonic tensor as exemplified in Sec. 1.3.
These leptonic tensors will let us easily interface our program with several neutrino event

– 11 –



Figure 7. Validation results for the process e+e− → µ+µ− with random azimuthal angle φ = 0.34

and for 500 evenly-spaced values of cos(θ) in the range [−1, 1). On the left panel, we plot the
computational and analytic squared amplitudes versus cos(θ). On the right panel, we plot the
percentage deviation of the squared amplitude with respect to the analytic value as a function of
cos(θ).

Figure 8. Validation results for the process e−µ− → e−µ− with random azimuthal angle φ = 2.67

and for 500 evenly-spaced values of cos(θ) in the range [−1, 1). On the left panel, we plot the
computational and analytic squared amplitudes versus cos(θ). On the right panel, we plot the
percentage deviation of the squared amplitude with respect to the analytic value as a function of
cos(θ).

generators. Once we can extract the leptonic tensor from the squared amplitudes, we plan
on performing tests with more complex events as well as with some Beyond the Standard
Model theories.
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Figure 9. Validation results for the process e+e− → e+e− with random azimuthal angle φ = 0.00

and for 500 evenly-spaced values of cos(θ) in the range [−1, 1). On the left panel, we plot the
computational and analytic squared amplitudes versus cos(θ). On the right panel, we plot the
percentage deviation of the squared amplitude with respect to the analytic value as a function of
cos(θ).
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