

Single Transverse Variables in MicroBooNE

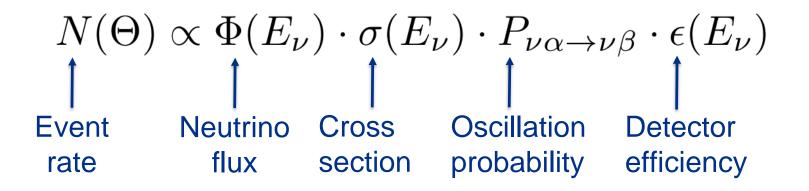
Linh Pham - The University of Texas at El Paso Supervisor: Dr. Steven Gardiner 5th August 2020

Outline

1. INTRODUCTION

2. BACKGROUND

- Cross-section Measurements
- Signal definition
- Single Transverse Variables (STVs)
- 3. METHOD
- Simulation procedure
- Smearing matrix calculation
- 4. RESULTS

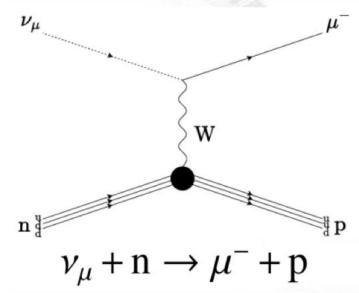

INTRODUCTION

- 1. Study neutrino scattering cross-sections on an argon target
- Monte Carlo simulation
- Reconstruction of Single Transverse Variables (STVs)
- **2. Single Transverse Variables: probe nuclear effects** STVs have been studied for neutrino-carbon interactions
- \rightarrow apply technique to argon nuclei
- 3. Goal
- 1. Examine reconstruction methods
- 2. Examine current analysis process

Study neutrinonucleus interactions

BACKGROUND: Cross-section measurements

- Neutrino cross-section measurements
 - Improved precision in oscillation analyses
 - Constrain theoretical models of neutrino-nucleus scattering



BACKGROUND: Signal definition

CC0\piNp \rightarrow 1 muon, zero pions, and at least 1 proton in the final state.

Charge-Current Quasi-Elastic (CCQE)

- Dominant interaction mode at neutrino energies relevant for MicroBooNE (between 0.1 and 1.5 GeV)
- Neutrino exchanges a W boson with a nucleon in the nucleus → a charged lepton is produced and the nucleon's isospin is altered

🛠 Fermilab

BACKGROUND: Single Transverse Variables

Three observables:

- Quantify the momentum imbalance between the final muon and leading proton.
- Defined on the transverse plane.

 $\vec{p}_{\mu}^{\mathrm{T}}$

 \vec{p}_{μ}

 $\vec{p}_{
u_{\mu}}$

🗲 Fermilab

 \rightarrow Sensitive probe of nuclear effects

METHOD: Simulation procedure

GENIE v3.0.6 : Theory Events

- Tune G18_10a_02_11a: default model
- Tune G00_00b_00_000: alternate model

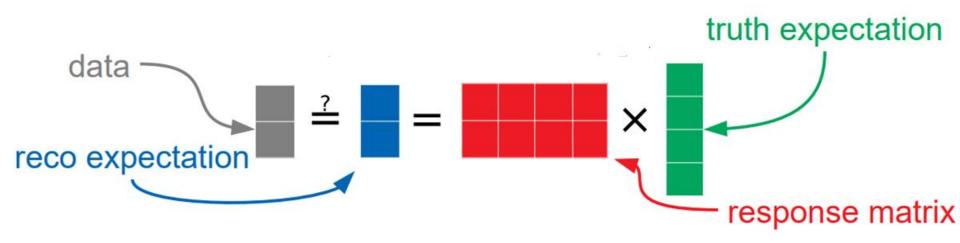
Uboonecode : Reconstructed Events

- Default model
- Alternate model

Cross-section Extraction

$$\left(\frac{d\sigma}{dx}\right)_i = \frac{N_i - B_i}{\tilde{\epsilon} \cdot N_{target} \cdot \Phi_{\nu_{\mu}} \cdot (\Delta x)_i}$$

Macro files to analyze simulated events \rightarrow ROOT


VIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

METHOD: Smearing matrix calculation

Forward-folding Process

• Apply detector effect to theory event sets \rightarrow smearing matrix

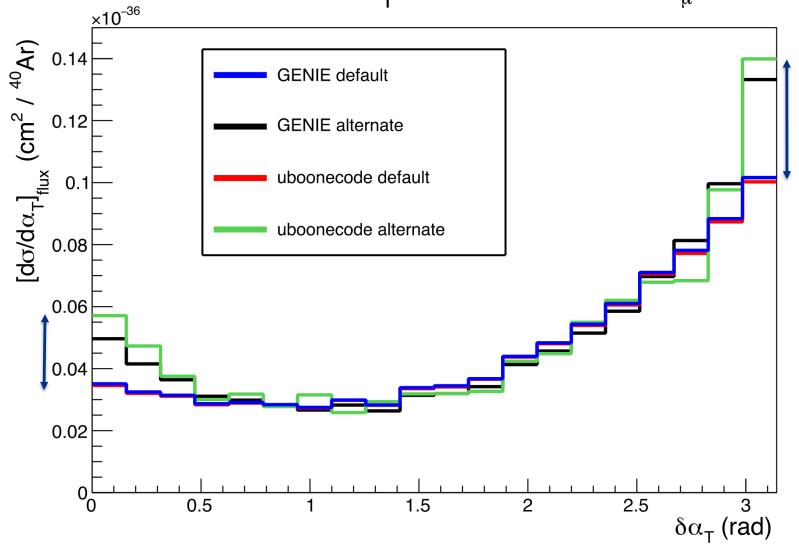
• Smearing matrix is built from uboonecode default model.

$$S_{ij} = \frac{N_{ij}^{sel}}{N_j^{sel}}$$

True bin *j* Reco bin *i*

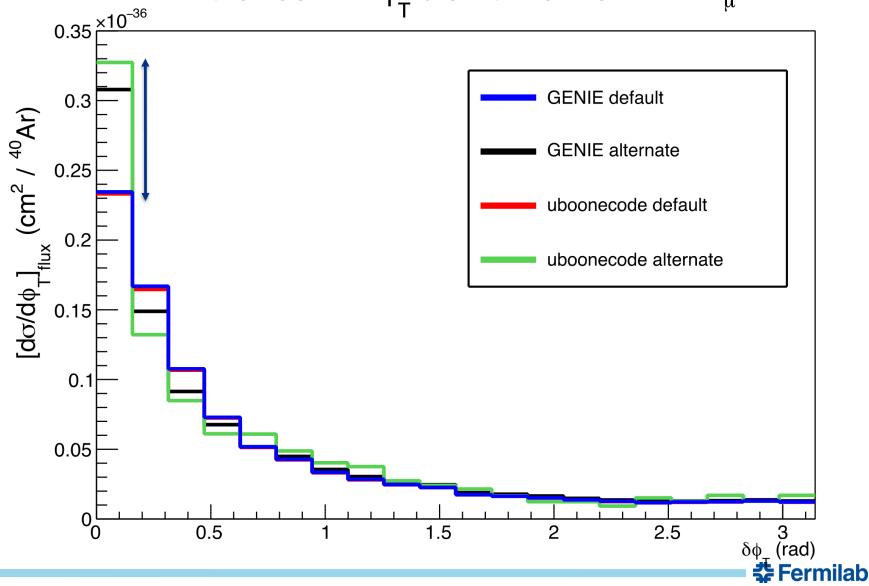
METHOD: Analysis of reconstruction performance

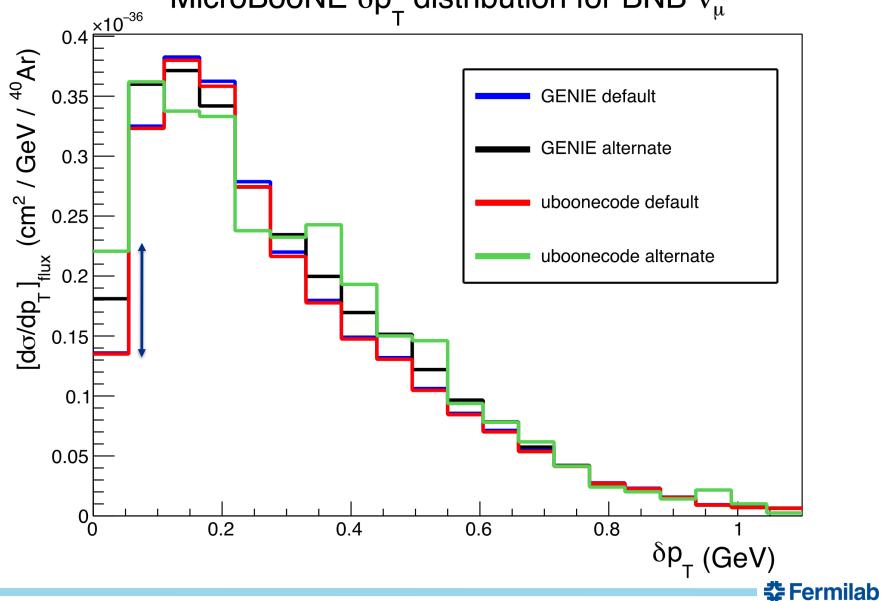
Smear true cross-sections calculated using both sets of GENIE theory events


After cross-sections are obtained from the 4 samples:

- 1. Closure check: smeared-GENIE default = uboonecode default
- 2. Main questions:
- Are the "smeared GENIE default" and "smeared GENIE alternate" results distinguishable after applying the smearing matrix?
- Does the "smeared GENIE alternate" cross section match the reconstructed "uboonecode alternate" one?

RESULTS


MicroBooNE $\delta \alpha_{T}$ distribution for BNB ν_{μ}


RESULTS

RESULTS

MicroBooNE $\delta p_{_{\rm T}}$ distribution for BNB $\nu_{_{\rm H}}$

CONCLUSION & FUTURE WORK

CONCLUSION

- This is the first "fake data" study for an emerging STV cross section analysis for MicroBooNE
- The smearing matrix shows some dependence on the default model. Nevertheless, opportunities still exist to differentiate between the two GENIE cross-section models for the angular STVs.
- Improvements in the reconstruction are needed for more reliable reconstruction of δp_T and to reduce the model-dependence of the smearing matrix.

FUTURE WORK

- Possible improvements to the analysis will be studied in the future using the tools developed here
- A combination of refinements to the event selection, cross section binning, signal definition, and reconstruction methods will be pursued

THANK YOU

- Dr. Steven Gardiner
- Dr. Laura Fields
- Dr. Carrie, Matthew, Donovan, SIST committee
- And friends. !

REFERENCES

- T2K collaboration, Probing Nuclear Effects at the T2K Near Detector Using Transverse Kinematic Imbalance, in Prospects in Neutrino Physics, 4, 2016, 1605.00179
- MicroBooNE collaboration, Recent Neutrino Cross Section Measurements from MicroBooNE, PoS LeptonPhoton2019 (2019) 065.

