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Quantum computers are computational devices that employ quantum-mechanical phenomena in
solving problems that are classically intractable. Future applications of quantum computers include
prime factorization of large numbers, implementing more efficient search algorithms, among various
applications. Most quantum algorithms utilize superposition of states in solving a given problem.
Therefore, the decay of the superposition of states is a limitation to performing complex quantum
algorithms. Quantum decoherence is usually characterized by measuring two constants: T1 (thermal
relaxation time) and T2 (dephasing time). Here we present an overview of measuring and simulating
T1 and T2 for qubits and qudits using QuTip and Qiskit.

I. INTRODUCTION

Quantum computers perform computations exploiting
quantum mechanics to a possible advantage, allowing us
to prepare and manipulate states that do not have a clas-
sical equivalent. In particular, phenomena like superpo-
sition and entanglement may enable quantum computers
to outperform their classical counterparts in certain ap-
plications. In fact, it has been shown that the number of
steps required to find the prime factors of an integer in-
creases exponentially as the integer increases [1]. Shor’s
factoring algorithm, however, can factor prime numbers
in polynomial time. In fact, there has been promising re-
sults from the D-Wave 2000Q computer as it was able to
factor the number 376289 using 94 logical qubit gates [2].
It is thus essential to develop new encryption protocols
since the security of online transactions assumes the im-
possibility of factoring large numbers in a reasonable time
using classical algorithms. Furthermore, quantum com-
puters hold promise of efficiently simulating large atomic
systems in order to understand their properties. The
calculation time scales exponentially using classical com-
puters as the number of atoms grows, while it grows poly-
nomially on quantum computers [3].

Implementing these useful quantum algorithms is con-
tingent upon building accurate quantum hardware that is
not affected by noise. Environmental noise decreases co-
herence time of qubits, meaning that qubits do not stay
in a desired state long enough to carry out a complex
computation. Right now, the coherence time of qubits is
on the order of 10’s of microseconds, which is not long
enough to solve interesting problems. Therefore, mitigat-
ing noise and designing noise-tolerant quantum comput-
ers is a necessity. To that end, harnessing the full power
of quantum computers necessitate characterization and
understanding of noise sources and how they impact a
given quantum system.

Often times, T1 and T2 are used to quantify noise. In

this report, we provide an approach as to how T1 and T2
values are calculated and simulated for quantum systems.
In addition, we compare simulated values of T1 and T2
with those of a real quantum computer’s measurements.
IBMQ Experience is used to prepare, run and measure
quantum states, while QuTip is used for simulation.

II. BACKGROUND

The basic unit of information for quantum computers
is a qubit. In classical computers, bits are manifested
by transistors that are turned on or off through applying
electrical pulses. The value of bit is deterministic and is
measured to be either 0 or 1. For quantum computers,
qubits are implemented as a two-state device exhibiting
desired quantum-mechanical phenomena such as super-
position or entanglement.

Theoretically, qubits are represented as vectors in
Hilbert space, a complex vector space with an inner prod-
uct. Qubits can exist in the state |0〉 or |1〉 or a su-
perposition of both states such that |ψ〉= α|0〉 + β|1〉,
where α and β are probability amplitudes, implying that
α2 + β2 = 1. Quantum gates are defined as opera-
tions on quantum states represented by unitary matrices,
U†U=UU†=I, making quantum computations reversible.
Gates may be visualized as rotations around the Bloch
sphere in Figure 1. The Bloch sphere has basis states
given by the x, y, and z axes. The direction of the state
ψ, the red vector on the sphere, determines the state of
the qubit. For example, if ψ is pointing in the positive z-
direction, the qubit is in the |0〉 state and if it is pointing
in the negative z-direction, the qubit is in the |1〉 state.
If ψ is pointing anywhere between |0〉 or |1〉, the qubit is
in a superposition of both states. It is also worth noting
that the Bloch Sphere is a viable representation of a sin-
gle qubit only, as states of higher dimensions cannot be
visualized.
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Figure 1: The Bloch Sphere

Experimentally, there are numerous techniques to
fabricate qubits. Generally, in order for a qubit to per-
form well, it must satisfy some requirements such as be-
ing loosely coupled to their environment and strongly
coupled to a classical control system. It is also imper-
ative for the qubit to be an anharmonic oscillator. A
harmonic oscillator would not work because all levels are
uniformly spaced, so a pulse that excites the first tran-
sition would also excite the second (and third and any
others)[4]. Hence, the goal is to design an anharmonic
oscillator where the two lowest energy levels are used
as qubit.For the purpose of this report, only the real-
ization of transmission line shunted plasma oscillation
qubits (transmon qubits) will be discussed. The trans-
mon circuit, as shown in Figure 2, consists of a Josephson
Junction shunted by a relatively large capacitor so that
noise charge is reduced [5]. The Josephson Junction is
responsible for anharmonicity, which allows for selective
qubit control. The circuit then could be conceived as an
artificial atom. This design minimizes energy dissipation,
resulting in longer coherence time ≈100µs and allowing
for longer computations to take place [6].

Figure 2: Transmon Qubit:the transmon qubit circuit con-
tains a Josephson Junction shunted by a relatively large ca-
pacitor so that EJ � EC , where Ec is the charging energy
(kinetic energy in capacitor) and EJ is the potential energy
stored in the Josephson Junction

Measurement After applying gates to qubits, a mea-
surement should be done in order to identify the state of
the system. Measurement is performed in a given com-

putational basis i.e. the |+〉,|−〉 basis or the |0〉,|1〉 basis.
Measuring the state of the system causes the wave func-
tion to collapse into one state, destroying the quantum
state. However, creative techniques, such as quantum
non-demolishing measurement(QND), have been devel-
oped to observe the state of the system without causing
its state decay. That way, it is possible to continuously
monitor the state of the qubit for some time before it
eventually decays due to energy dissipation.

III. METHODS

In order to simulate quantum systems, the following
tools were used

• Qiskit : IBMQ Experience is an online platform
that enables the general public to run quantum
algorithms on real quantum computers. Qiskit,
an open-source software development kit, provides
users with pulse-level control. The used model
of computation is quantum circuits, where quan-
tum algorithms consist of consecutive gates. IBM’s
quantum computers consist of superconducting
transmon qubits that are based in their research
centers [7].

• QuTip: an open-source software for simulating the
dynamics of quantum systems. It contains built-
in functions that represent different noise models,
offering an easy-to-use simulation of open quantum
systems. Finally, QuTip is Python-based and can
be run on Jupyter notebooks [8].

Measuring T1: thermal relaxation time is defined as
the time needed for a qubit to move from the excited
state |1〉 to the ground state |0〉. The process could be
formulated by the density matrix ρ = α|ψ〉〈ψ| + β|g〉〈g|
where α2 is the probability that the qubit is in state |ψ〉
whereas β2 is the probability that a qubit is in the ground
state |g〉. As time goes by, the value of β2 approaches 1.
Experimentally, T1 is the time by which the population
of excited state decays to 1/e of its initial value, Pe(t) =
Pe(0)e−t/T1 [5].
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Experimentally, the value of T1 is measured through
the following sequence of operations [5]:

1. Prepare the qubit in the excited state by sending a
π-pulse to the qubit.

2. Wait some time t.

3. Measure the state of the qubit.

Measuring T2: dephasing time is defined as the
elapsed time before a qubit’s resonance frequency be-
comes unidentified. T2 could be thought of as the loss
of quantum coherence over time. The measurement of
T2 is achieved through the following sequence of opera-
tions [5]:

1. Prepare the qubit in superposition state 1√
2
(|g〉 +

i|e〉) by applying a π
2 -pulse to the qubit.

2. Wait some time t.

3. Apply another π
2 -pulse to bring back the qubit to

ground state.

4. measure the state of the qubit.

IV. RESULTS

Using Qiskit : for the experiments presented in Fig-
ures 1 and 2, the ibmqx2 device was used. Ibmqx2 is
a five-qubit computer that is based in Yorktown, New
York. Both experiments, measuring T1 and T2, were pre-
pared, run and measured on the first qubit (qubit 0) with
1024 shots (number of times the system was prepared,
run, and measured). According to IBM’s specifications
of the device, on average, the qubit’s T1 ≈ 52 µs, while
the value of T2 ≈ 77 µs. Though our experiments did
not yield these exact numbers, it still provided insights
into the order of magnitude for both values, which is µs.
The values provided by IBM were obtained by averaging
numerous measurements, so it is highly likely that the
exact numbers will not obtained from one experiment.

In Figure 3, the probability of the qubit being in the
|0〉 state (or graound state) increases as time progresses.
After about 70 µs, the probably of measuring the system
in the ground state is very close to 1.

In Figures 4 and 5, the envelope of the curve exponen-
tially decreases as time progresses. It is usually simu-
lated as an exponential decay. The probability of mea-
suring the qubit in the |+〉 state increases as time goes.
After some time, probability of finding the qubit in the
|+〉 state is 0.5, meaning that there we lost track of the
qubit’s resonance frequency.

Figure 3: A measurement of T1 for a qubit in µs.

Figure 4: A measurement of T2 for a qubit in µs.

Figure 5: Simulation of T2 of the first excited state for
a qubit.

Using QuTip: Owing to the fact that our system
is an open quantum system, it is described by the Lin-
blad Master Equation. Environmental noise, which is
not a unitary operation, is represented as coupling terms
between the qubit and its environment. In QuTiP, the
function Mesolve is used to evolve a given system in time
according to the Schrödinger equation and to the Mas-
ter Equation [10]. The Mesolve function automatically
determines if it is sufficient to use the Schrödinger equa-
tion (if no collapse operators were given) or if it has to
use the aster equation (if collapse operators were given).
Evolving the system according to the Schrödinger equa-
tion is less computationally intensive than using the Mas-
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ter Equation, so when possible, the solver will use the
Schrödinger equation. The arguments of the Mesolve
function are the system Hamiltonian, initial state, col-
lapse operators, and expectation operators. Hamiltoni-
ans need to be input as a matrix, the initial state as a
vector or matrix, and operators as lists.

Figure 6 shows the probability of finding the qubit in
the first excited state |1〉. The probability of finding the
qubit in the |1〉 state decreases effectively to zero as time
goes by.

Figure 6: Simulation of T1 for a qubit.

In Figure 7, as the number of energy levels increases,
the stability of the qudit decreases, resulting in a shorter
T1. A qu-d-it is a generalization of a qubit to a d-level
or d-dimension system [9]. As the dimensions of qudits
increase, more information will be held and processed.
However, due to the instability of higher energy systems
(qudits), they decay much quicker than two-level systems
(qubits).

Figure 7: Simulation of T1 of 10 excited states for a qudit.
The blue curve represents T1 for the first excited state. The
curves to the left represent higher energy levels.

In Figure 8, the blue curve represents T2 (the dephas-
ing) of a qubit. The envelope of the curve could be effi-
ciently simulated as a decaying exponential.

Figure 8: Simulation of T2 of the first excited state for
a qubit.
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