Our use of HDF5 in HEP



Some background

We have been exploring the use of HDF5 for HEP processing for a couple of
years now, as part of CMS big data project, an LDRD project and a SciDAC4
project. In the SciDAC4 project, HEP data analysis on HPC, we

e have provided support for storing NOvA’s CAF equivalent data in HDF5

o NOVA has been writing HDF5 analysis ntuples in production for more than a year
o NOVA collaborators have been using for more than a year

e are working on a data-parallel package, PandAna, to read in HDF5 data

and easily express user-defined cuts

o Users report faster development cycle compared to C++ (no compilation, fast exploration)
o Users report 5-100 times faster than compiled C++/ROOT code, for various analyses



NOVA processing




Multidimensional data

e \We organize our multidimensional (n-tuple) data to be able to write analysis
code that is easy and scalable.

A new name for a standard method for organizing these data: data matrix.
Each variable is represented as a column and each observation as a row.
Related to Boyce-Codd 3rd normal form.

We use a data matrix (table) for each set of related observations; analysis
code sees pandas.DataFrame objects.



NOVA data

Table 1

NOvVA data table organization with one entry per slice.

run subrun event sub- distallpngtop ... 35 more
event
433 61 6124 35 nan
433 61 6124 36 -0.7401
433 61 6124 37 nan
433 61 6125 1 nan
433 61 6125 2 423.633
433 61 6125 3 -2.8498
Table 2
NOVA data table organization with one entry per vertex.
run subrun event sub- vitxid npng3d ... 6 more
event
433 61 6124 35 0 0
433 61 6124 36 0 1
433 61 6124 36 1 1
433 61 6124 36 2 5
433 61 6125 1 0 1
433 61 6125 3 0 0




HDF5

e HDF5 is a file format designed to store large amounts of data. — It is supported
by the HDF Group [https://www.hdfgroup.org]
— It is widely available at HPC centers, and easily installable on laptops.
— It supports (MPI) parallel 10, and has special drivers tuned for parallel
filesystems.

e It has two very important abstractions:
datasets, which are multidimensional arrays (like numpy) of homogeneous
types, and groups, which are containers of datasets and other groups.

e We use it to store various tables: a table corresponds to a group;

e a column corresponds to a dataset in a group;
all datasets is a group have the same number of entries, but they can have
different types



StandardRecord

class StandardRecord
{ The StandardRecord is the primary top-level object in the
0 Common Analysis File trees, complex but common.
public:
StandardRecord();
~StandardRecord();

SRHeader hdr; ///< Header branch: run, subrun, etc.

SRSpill spill; ///< Beam spill branch: pot, beam current, etc.
SRSlice sic: ///< Slice branch: nhit, extents, time, etc.
SRTrackBranch Ttk ///< Track branch: nhit, len, etc,
SRVertexBranch vix; ///< Vertex branch: location, time, etc.
SRMichelE me; ///< Michel electron branch

SREnergyBranch  energy; ///< Energy estimator branch

SRIDBranch sel; ///< Selector (PID) branch

SRTruthBranch mc; ///< Truth branch for MC: energy, flavor, etc.

SRParentBranch parent; ///< True parent branch for matching, e.g. MRCC
SRTrainingBranch training; ///< Extra training information for prototyping PIDs etc.

}:
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public:
SRHeader () ;
~SRHeader() ;
S RH eader unsigned int run; ///< run number
unsigned int  subrun; ///< subrun number 1 1
int cycle; ///< MC simulation cycle number EaCh Varlable IS
int batch; ///< MC simulation batch number
unsigned int evt; ///< ART event number, indexes trigger windows. represented aS a
unsigned short subevt; ///< slice number within spill
bool ismc; ///< data or MC? True if MC
Det_t det; ///< Detector, ND = 1, FD = 2, NDOS = 3 C0|umn_
bool blind; ///< if true, record has been corrupted for blindness
bool filt; ///< if true, record has ben filtered

unsigned short dibfirst; ///< first diblock in detector configuration (1-14)

unsigned short diblast; ///< last diblock in detector configuration (1-14)

unsigned short dibmask; ///< diblock mask (bitfield, lowest bit = diblock 1)

unsigned short maskstatus;///< @ no mask found in DB, 1 mask used ok, 2 masking turne
wrong in this case.

unsigned short year; ///< year of spill

unsigned short month; ///< month of spill

unsigned short day; ///< day of spill within month
unsigned short doy; ///< day of spill within year
unsigned short hour; ///< hour of spill

unsigned short minute; ///< minute of spill

unsigned short second; ///< second of spill

float unixtime; ///< unix time of spill

float subevtstarttime; ///< time of beginning of slice within spill [ns]
float subevtendtime; ///< Slice end time [ns]
float subevtmeantime; ///< Slice mean time [ns]

unsigned int nbadchan; ///< Number of bad channels in a subrun. Ignores channels i
unsigned int ntotchan; ///< Total number of channels in the analysis masked region

unsigned short gain; ///< Global gain setting of the detector
bool finetiming;///< Is fine timing enabled in this run?

void setDefault();
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rec.hdr is a group in our HDF5 file
representing SRHeader class,
and a dataset each variable.



SRVertexBranch

/// Vectors of reconstructed vertices found by various algorithms

class SRVertexBranch
{
public:
SRVertexBranch();
~SRVertexBranch();

SRElastic elastic; ///< Single vertex found

by

Elastic Arms

std: :vector<SRHoughVertex> hough; ///< Vector of vertices found by HoughVertex

size_t nhough; ///< Number of vertices in HoughVertex (hough.size())
std::vector<SRVertexDT> vdt; ///< Vector of vertices found by VertexDT

size_t nvdt; ///< Number of vertices in VertexDT (vdt.size())

void fillSizes();

|-

Vv // oend nameacnare



HDF5 representation of SRVertex and SRElastic

ssehrish@cori@l:~/pandana_stuff> h51ls /global/cscratchl/sd/ssehrish/pandana_input/nd_165/nd_165_files_with_evtseq.h5caf.h5, rec.vtx

cycle Dataset {2308113/Inf, 1}

evt Dataset {2308113/Inf, 1} 1 :

evt.seq Dataset {2308113/Inf, 1} rEEC:'\/t)( IS a SJr()LJF) In-our
nelastic Dataset {2308113/Inf, 1} HDF5 flle represen‘“ng

nhough Dataset {2308113/Inf, 1}

nvdt Dataset {2308113/Inf, 1} SRVertexBrnach class, and
run Dataset {2308113/Inf, 1} . .

subevt Dataset {2308113/Inf, 1} rec.vix.elastic SRElastic.
subrun Dataset {2308113/Inf, 1}

ssehrish@cori@l:~/pandana_stuff> h51ls /global/cscratchl/sd/ssehrish/pandana_input/nd_165/nd_165_files_with_evtseq.h5caf.h5, rec.vtx.elastic
cycle Dataset {1913329/Inf, 1}

evt Dataset {1913329/Inf, 1}

evt.seq Dataset {1913329/Inf, 1}

rec.vtx.elastic_idx Dataset {1913329/Inf, 1}

run Dataset {1913329/Inf, 1}

subevt Dataset {1913329/Inf, 1}

subrun Dataset {1913329/Inf, 1}

time Dataset {1913329/Inf, 1}

vtx.x Dataset {1913329/Inf, 1}

vix.y Dataset {1913329/Inf, 1}

vtx.z Dataset {1913329/Inf, 1}




HDF5 representation of SRHoughVertex

ssehrish@cori@l:~/pandana_stuff> h5ls /global/cscratchl/sd/ssehrish/pandana_input/nd_165/nd_165_files_with_evtseq.h5caf.h5/rec.vtx.hough
cycle Dataset {0, 1}
evt Dataset {0, 1}
evt.seq Dataset {0, 1}
rec.vtx.hough_idx Dataset {0, 1}

run Dataset {0, 1} rec.vix.hough is a group in

bevt Dataset {0, 1} ) i
sk Dataset {0, 1} our HDF5 file representing

time Dataset {0, 1}
viX. X Dataset {0, 1} SRHOUghverteX.
vix.y Dataset {0, 1}
vtx.z Dataset {0, 1}




Using HEP_HPC ntuple library to write HDF5 files

e \We have a C++ library hep_hpc on BitBucket to help write HDF5 files.
e \We have written an art module, HDFMaker, to be used in the NOvVA workflow

that also creates the CAF files.
o https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/HDF5Maker
o  This module writes one HDF5 tabular file per job. The job is run on the Fermi grid nodes and
one small HDF5 file corresponding to each art-ROOT input file is generated. This results in
thousands of small HDF5 files.
e NOVA has the ownership of this module now, and their use of HEP_HPC
ntuple library has evolved much.
e An example of using HEP_HPC code is available here:
https://bitbucket.org/fnalscdcomputationalscience/hep hpc/src/master/exampl
es/make_ntuple_file.cc



https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/HDF5Maker
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/examples/make_ntuple_file.cc
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/examples/make_ntuple_file.cc

Concatenating thousands of HDF5 files

The NOvVA data consists of millions and millions of events that are grouped in
hundreds to thousands of small HDF5 files.

e \We have worked on a scalable parallel 10 utility program to concatenate large
number of HDF5 files.
a. Parallelism beyond number of files
b. Use striping and parallel 10 for improved performance

e The utility is an MPI program, where input file(s) are evenly distributed among
all MPI ranks.

e It has options for independent and collective modes for reads and writes

e The HDF5-related tuning includes adjusting metadata cache size to 128 MiB,
collective metadata 10 mode, in-memory |10, data chunk size and data
storage layout adjustments.



PandAna Framework

e \We are developing a framework, PandAna, to facilitate easy-to-use, scalable
and high- performance analysis code.
e PandAna supports parallel reading of HDF5 files, which have our type of
schema.
e Each table has an additional column used to support load-balancing for
parallel reading.
e Each MPI process processes a portion of each table that is used.
e Many analyses do not use every table in a large dataset.
® PandAna will read from only the tables used in your analysis program.
e Many analyses do not use every column in each table that is used.

® PandAna will read only those columns that are actually needed.



More PandAna

e Analysis code is written (almost) exactly as in a serial program; parallelism is
implicit.

e Analysis code sees a pandas.DataFrame for each table, carrying only
columns that will be used.
— All needed data is in some dataframe.
— No data are duplicated between processes.
— Data are distributed to assure that no event is split across processes.

PandAna is still under development.



Some near future plans

We will be working with DUNE, CMS and ATLAS

e DUNE has already adopted NOvA's CAF, and is looking to use PandAna

e |Initiating discussions with Coffea project team
e ATLAS collaborators in our SciDAC project are also interested in using
PandAna approach,

o We have an example program that uses uproot to read a CMS nanoaod “flat ntuple” and write
our style of HDF5 file.

o The generic equivalent is a fairly obvious modification. Something like it could be written for an
ATLAS equivalent of the nanoaod.



