
Our use of HDF5 in HEP



Some background 
We have been exploring the use of HDF5 for HEP processing for a couple of 
years now, as part of CMS big data project, an LDRD project and a SciDAC4 
project. In the SciDAC4 project, HEP data analysis on HPC, we 

● have provided support for storing NOvA’s CAF equivalent data in HDF5 
○ NOvA has been writing HDF5 analysis ntuples in production for more than a year 
○ NOvA collaborators have been using for more than a year

● are working on a data-parallel package, PandAna, to read in HDF5 data 
and easily express user-defined cuts 

○ Users report faster development cycle compared to C++ (no compilation, fast exploration)
○ Users report 5-100 times faster than compiled C++/ROOT code, for various analyses
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Multidimensional data 

● We organize our multidimensional (n-tuple) data to be able to write analysis 
code that is easy and scalable.

● A new name for a standard method for organizing these data: data matrix.
● Each variable is represented as a column and each observation as a row.
● Related to Boyce-Codd 3rd normal form.
● We use a data matrix (table) for each set of related observations; analysis 

code sees pandas.DataFrame objects.



NOvA data



HDF5
● HDF5 is a file format designed to store large amounts of data. – It is supported 

by the HDF Group [https://www.hdfgroup.org]
– It is widely available at HPC centers, and easily installable on laptops.
– It supports (MPI) parallel IO, and has special drivers tuned for parallel 
filesystems.

● It has two very important abstractions:
datasets, which are multidimensional arrays (like numpy) of homogeneous 
types, and groups, which are containers of datasets and other groups.

● We use it to store various tables: a table corresponds to a group;
● a column corresponds to a dataset in a group;

all datasets is a group have the same number of entries, but they can have 
different types



StandardRecord 
Look at how NOvA data looks i.e. StandardRecord objectsThe StandardRecord is the primary top-level object in the 

Common Analysis File trees, complex but common. 



SRHeader Each variable is 
represented as a 
column.



rec.hdr is a group in our HDF5 file 
representing SRHeader class, 
and a dataset each variable. 



SRVertexBranch



HDF5 representation of SRVertex and SRElastic 

rec.vtx is a group in our 
HDF5 file representing 
SRVertexBrnach class, and 
rec.vtx.elastic SRElastic.  



HDF5 representation of SRHoughVertex 

rec.vtx.hough is a group in 
our HDF5 file representing 
SRHoughVertex.



Using HEP_HPC ntuple library to write HDF5 files

● We have a C++ library hep_hpc on BitBucket to help write HDF5 files.
● We have written an art module, HDFMaker, to be used in the NOvA workflow 

that also creates the CAF files. 
○ https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/HDF5Maker 
○ This module writes one HDF5 tabular file per job. The job is run on the Fermi grid nodes and 

one small HDF5 file corresponding to each art-ROOT input file is generated. This results in 
thousands of small HDF5 files.

● NOvA has the ownership of this module now, and their use of HEP_HPC 
ntuple library has evolved much. 

● An example of using HEP_HPC code is available here: 
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/exampl
es/make_ntuple_file.cc 

https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/HDF5Maker
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/examples/make_ntuple_file.cc
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/examples/make_ntuple_file.cc


Concatenating thousands of HDF5 files 

The NOvA data consists of millions and millions of events that are grouped in 
hundreds to thousands of small HDF5 files.

● We have worked on a scalable parallel IO utility program to concatenate large 
number of HDF5 files. 
a. Parallelism beyond number of files
b. Use striping and parallel IO for improved performance

● The utility is an MPI program, where input file(s) are evenly distributed among 
all MPI ranks.

● It has options for independent and collective modes for reads and writes
● The HDF5-related tuning includes adjusting metadata cache size to 128 MiB, 

collective metadata IO mode, in-memory IO, data chunk size and data 
storage layout adjustments.



PandAna Framework

● We are developing a framework, PandAna, to facilitate easy-to-use, scalable 
and high- performance analysis code.

● PandAna supports parallel reading of HDF5 files, which have our type of 
schema.
● Each table has an additional column used to support load-balancing for 

parallel reading.
● Each MPI process processes a portion of each table that is used.

● Many analyses do not use every table in a large dataset.
● PandAna will read from only the tables used in your analysis program.

● Many analyses do not use every column in each table that is used. 
● PandAna will read only those columns that are actually needed.



More PandAna

● Analysis code is written (almost) exactly as in a serial program; parallelism is 
implicit.

● Analysis code sees a pandas.DataFrame for each table, carrying only 
columns that will be used.
– All needed data is in some dataframe.
– No data are duplicated between processes.
– Data are distributed to assure that no event is split across processes.

PandAna is still under development. 



Some near future plans
We will be working with DUNE, CMS and ATLAS 

● DUNE has already adopted NOvA’s CAF, and is looking to use PandAna 
● Initiating discussions with Coffea project team 
● ATLAS collaborators in our SciDAC project are also interested in using 

PandAna approach, 
○ We have an example program that uses uproot to read a CMS nanoaod “flat ntuple” and write 

our style of HDF5 file. 
○ The generic equivalent is a fairly obvious modification. Something like it could be written for an 

ATLAS equivalent of the nanoaod.


