
Our use of HDF5 in HEP

Some background
We have been exploring the use of HDF5 for HEP processing for a couple of
years now, as part of CMS big data project, an LDRD project and a SciDAC4
project. In the SciDAC4 project, HEP data analysis on HPC, we

● have provided support for storing NOvA’s CAF equivalent data in HDF5
○ NOvA has been writing HDF5 analysis ntuples in production for more than a year
○ NOvA collaborators have been using for more than a year

● are working on a data-parallel package, PandAna, to read in HDF5 data
and easily express user-defined cuts

○ Users report faster development cycle compared to C++ (no compilation, fast exploration)
○ Users report 5-100 times faster than compiled C++/ROOT code, for various analyses

NOvA processing

Many small
HDF5 files,
one per
subrun

One large HDF5
file Passed events

Parallel HDF5
concatenating
application

Parallel
candidate
selection
(MPI,
Python,
Pandas)

HDFMaker

Multidimensional data

● We organize our multidimensional (n-tuple) data to be able to write analysis
code that is easy and scalable.

● A new name for a standard method for organizing these data: data matrix.
● Each variable is represented as a column and each observation as a row.
● Related to Boyce-Codd 3rd normal form.
● We use a data matrix (table) for each set of related observations; analysis

code sees pandas.DataFrame objects.

NOvA data

HDF5
● HDF5 is a file format designed to store large amounts of data. – It is supported

by the HDF Group [https://www.hdfgroup.org]
– It is widely available at HPC centers, and easily installable on laptops.
– It supports (MPI) parallel IO, and has special drivers tuned for parallel
filesystems.

● It has two very important abstractions:
datasets, which are multidimensional arrays (like numpy) of homogeneous
types, and groups, which are containers of datasets and other groups.

● We use it to store various tables: a table corresponds to a group;
● a column corresponds to a dataset in a group;

all datasets is a group have the same number of entries, but they can have
different types

StandardRecord
Look at how NOvA data looks i.e. StandardRecord objectsThe StandardRecord is the primary top-level object in the

Common Analysis File trees, complex but common.

SRHeader Each variable is
represented as a
column.

rec.hdr is a group in our HDF5 file
representing SRHeader class,
and a dataset each variable.

SRVertexBranch

HDF5 representation of SRVertex and SRElastic

rec.vtx is a group in our
HDF5 file representing
SRVertexBrnach class, and
rec.vtx.elastic SRElastic.

HDF5 representation of SRHoughVertex

rec.vtx.hough is a group in
our HDF5 file representing
SRHoughVertex.

Using HEP_HPC ntuple library to write HDF5 files

● We have a C++ library hep_hpc on BitBucket to help write HDF5 files.
● We have written an art module, HDFMaker, to be used in the NOvA workflow

that also creates the CAF files.
○ https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/HDF5Maker
○ This module writes one HDF5 tabular file per job. The job is run on the Fermi grid nodes and

one small HDF5 file corresponding to each art-ROOT input file is generated. This results in
thousands of small HDF5 files.

● NOvA has the ownership of this module now, and their use of HEP_HPC
ntuple library has evolved much.

● An example of using HEP_HPC code is available here:
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/exampl
es/make_ntuple_file.cc

https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/HDF5Maker
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/examples/make_ntuple_file.cc
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/examples/make_ntuple_file.cc

Concatenating thousands of HDF5 files

The NOvA data consists of millions and millions of events that are grouped in
hundreds to thousands of small HDF5 files.

● We have worked on a scalable parallel IO utility program to concatenate large
number of HDF5 files.
a. Parallelism beyond number of files
b. Use striping and parallel IO for improved performance

● The utility is an MPI program, where input file(s) are evenly distributed among
all MPI ranks.

● It has options for independent and collective modes for reads and writes
● The HDF5-related tuning includes adjusting metadata cache size to 128 MiB,

collective metadata IO mode, in-memory IO, data chunk size and data
storage layout adjustments.

PandAna Framework

● We are developing a framework, PandAna, to facilitate easy-to-use, scalable
and high- performance analysis code.

● PandAna supports parallel reading of HDF5 files, which have our type of
schema.
● Each table has an additional column used to support load-balancing for

parallel reading.
● Each MPI process processes a portion of each table that is used.

● Many analyses do not use every table in a large dataset.
● PandAna will read from only the tables used in your analysis program.

● Many analyses do not use every column in each table that is used.
● PandAna will read only those columns that are actually needed.

More PandAna

● Analysis code is written (almost) exactly as in a serial program; parallelism is
implicit.

● Analysis code sees a pandas.DataFrame for each table, carrying only
columns that will be used.
– All needed data is in some dataframe.
– No data are duplicated between processes.
– Data are distributed to assure that no event is split across processes.

PandAna is still under development.

Some near future plans
We will be working with DUNE, CMS and ATLAS

● DUNE has already adopted NOvA’s CAF, and is looking to use PandAna
● Initiating discussions with Coffea project team
● ATLAS collaborators in our SciDAC project are also interested in using

PandAna approach,
○ We have an example program that uses uproot to read a CMS nanoaod “flat ntuple” and write

our style of HDF5 file.
○ The generic equivalent is a fairly obvious modification. Something like it could be written for an

ATLAS equivalent of the nanoaod.

