Our use of HDF5 in HEP

Some background

We have been exploring the use of HDF5 for HEP processing for a couple of
years now, as part of CMS big data project, an LDRD project and a SciDAC4
project. In the SciDAC4 project, HEP data analysis on HPC, we

e have provided support for storing NOvA’s CAF equivalent data in HDF5

o NOVA has been writing HDF5 analysis ntuples in production for more than a year
o NOVA collaborators have been using for more than a year

e are working on a data-parallel package, PandAna, to read in HDF5 data

and easily express user-defined cuts

o Users report faster development cycle compared to C++ (no compilation, fast exploration)
o Users report 5-100 times faster than compiled C++/ROOT code, for various analyses

NOVA processing

Multidimensional data

e \We organize our multidimensional (n-tuple) data to be able to write analysis
code that is easy and scalable.

A new name for a standard method for organizing these data: data matrix.
Each variable is represented as a column and each observation as a row.
Related to Boyce-Codd 3rd normal form.

We use a data matrix (table) for each set of related observations; analysis
code sees pandas.DataFrame objects.

NOVA data

Table 1

NOvVA data table organization with one entry per slice.

run subrun event sub- distallpngtop ... 35 more
event
433 61 6124 35 nan
433 61 6124 36 -0.7401
433 61 6124 37 nan
433 61 6125 1 nan
433 61 6125 2 423.633
433 61 6125 3 -2.8498
Table 2
NOVA data table organization with one entry per vertex.
run subrun event sub- vitxid npng3d ... 6 more
event
433 61 6124 35 0 0
433 61 6124 36 0 1
433 61 6124 36 1 1
433 61 6124 36 2 5
433 61 6125 1 0 1
433 61 6125 3 0 0

HDF5

e HDF5 is a file format designed to store large amounts of data. — It is supported
by the HDF Group [https://www.hdfgroup.org]
— It is widely available at HPC centers, and easily installable on laptops.
— It supports (MPI) parallel 10, and has special drivers tuned for parallel
filesystems.

e It has two very important abstractions:
datasets, which are multidimensional arrays (like numpy) of homogeneous
types, and groups, which are containers of datasets and other groups.

e We use it to store various tables: a table corresponds to a group;

e a column corresponds to a dataset in a group;
all datasets is a group have the same number of entries, but they can have
different types

StandardRecord

class StandardRecord
{ The StandardRecord is the primary top-level object in the
0 Common Analysis File trees, complex but common.
public:
StandardRecord();
~StandardRecord();

SRHeader hdr; ///< Header branch: run, subrun, etc.

SRSpill spill; ///< Beam spill branch: pot, beam current, etc.
SRSlice sic: ///< Slice branch: nhit, extents, time, etc.
SRTrackBranch Ttk ///< Track branch: nhit, len, etc,
SRVertexBranch vix; ///< Vertex branch: location, time, etc.
SRMichelE me; ///< Michel electron branch

SREnergyBranch energy; ///< Energy estimator branch

SRIDBranch sel; ///< Selector (PID) branch

SRTruthBranch mc; ///< Truth branch for MC: energy, flavor, etc.

SRParentBranch parent; ///< True parent branch for matching, e.g. MRCC
SRTrainingBranch training; ///< Extra training information for prototyping PIDs etc.

}:

L ildoo Jivitauct

public:
SRHeader () ;
~SRHeader() ;
S RH eader unsigned int run; ///< run number
unsigned int subrun; ///< subrun number 1 1
int cycle; ///< MC simulation cycle number EaCh Varlable IS
int batch; ///< MC simulation batch number
unsigned int evt; ///< ART event number, indexes trigger windows. represented aS a
unsigned short subevt; ///< slice number within spill
bool ismc; ///< data or MC? True if MC
Det_t det; ///< Detector, ND = 1, FD = 2, NDOS = 3 C0|umn_
bool blind; ///< if true, record has been corrupted for blindness
bool filt; ///< if true, record has ben filtered

unsigned short dibfirst; ///< first diblock in detector configuration (1-14)

unsigned short diblast; ///< last diblock in detector configuration (1-14)

unsigned short dibmask; ///< diblock mask (bitfield, lowest bit = diblock 1)

unsigned short maskstatus;///< @ no mask found in DB, 1 mask used ok, 2 masking turne
wrong in this case.

unsigned short year; ///< year of spill

unsigned short month; ///< month of spill

unsigned short day; ///< day of spill within month
unsigned short doy; ///< day of spill within year
unsigned short hour; ///< hour of spill

unsigned short minute; ///< minute of spill

unsigned short second; ///< second of spill

float unixtime; ///< unix time of spill

float subevtstarttime; ///< time of beginning of slice within spill [ns]
float subevtendtime; ///< Slice end time [ns]
float subevtmeantime; ///< Slice mean time [ns]

unsigned int nbadchan; ///< Number of bad channels in a subrun. Ignores channels i
unsigned int ntotchan; ///< Total number of channels in the analysis masked region

unsigned short gain; ///< Global gain setting of the detector
bool finetiming;///< Is fine timing enabled in this run?

void setDefault();

dibfirst
diblast
dibmask
doy

evt
evt.seq
filt
finetiming
gain

hour

ismc
maskstatus
minute
month
nbadchan
ntotchan
run

second
subevt

subevtendtime
subevtmeantime
subevtstarttime

subrun
unixtime
year

:~/pandana_stu

Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset
Dataset

globa
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/Inf,
{2308113/Inf,
{2308113/Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/Inf,
{2308113/Inf,
{2308113/Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/Inf,
{2308113/Inf,
{2308113/Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/1Inf,
{2308113/Inf,
{2308113/1Inf,

1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}
1}

rec.hdr is a group in our HDF5 file
representing SRHeader class,
and a dataset each variable.

SRVertexBranch

/// Vectors of reconstructed vertices found by various algorithms

class SRVertexBranch
{
public:
SRVertexBranch();
~SRVertexBranch();

SRElastic elastic; ///< Single vertex found

by

Elastic Arms

std: :vector<SRHoughVertex> hough; ///< Vector of vertices found by HoughVertex

size_t nhough; ///< Number of vertices in HoughVertex (hough.size())
std::vector<SRVertexDT> vdt; ///< Vector of vertices found by VertexDT

size_t nvdt; ///< Number of vertices in VertexDT (vdt.size())

void fillSizes();

|-

Vv // oend nameacnare

HDF5 representation of SRVertex and SRElastic

ssehrish@cori@l:~/pandana_stuff> h51ls /global/cscratchl/sd/ssehrish/pandana_input/nd_165/nd_165_files_with_evtseq.h5caf.h5, rec.vtx

cycle Dataset {2308113/Inf, 1}

evt Dataset {2308113/Inf, 1} 1 :

evt.seq Dataset {2308113/Inf, 1} rEEC:'\/t)(IS a SJr()LJF) In-our
nelastic Dataset {2308113/Inf, 1} HDF5 flle represen‘“ng

nhough Dataset {2308113/Inf, 1}

nvdt Dataset {2308113/Inf, 1} SRVertexBrnach class, and
run Dataset {2308113/Inf, 1} . .

subevt Dataset {2308113/Inf, 1} rec.vix.elastic SRElastic.
subrun Dataset {2308113/Inf, 1}

ssehrish@cori@l:~/pandana_stuff> h51ls /global/cscratchl/sd/ssehrish/pandana_input/nd_165/nd_165_files_with_evtseq.h5caf.h5, rec.vtx.elastic
cycle Dataset {1913329/Inf, 1}

evt Dataset {1913329/Inf, 1}

evt.seq Dataset {1913329/Inf, 1}

rec.vtx.elastic_idx Dataset {1913329/Inf, 1}

run Dataset {1913329/Inf, 1}

subevt Dataset {1913329/Inf, 1}

subrun Dataset {1913329/Inf, 1}

time Dataset {1913329/Inf, 1}

vtx.x Dataset {1913329/Inf, 1}

vix.y Dataset {1913329/Inf, 1}

vtx.z Dataset {1913329/Inf, 1}

HDF5 representation of SRHoughVertex

ssehrish@cori@l:~/pandana_stuff> h5ls /global/cscratchl/sd/ssehrish/pandana_input/nd_165/nd_165_files_with_evtseq.h5caf.h5/rec.vtx.hough
cycle Dataset {0, 1}
evt Dataset {0, 1}
evt.seq Dataset {0, 1}
rec.vtx.hough_idx Dataset {0, 1}

run Dataset {0, 1} rec.vix.hough is a group in

bevt Dataset {0, 1}) i
sk Dataset {0, 1} our HDF5 file representing

time Dataset {0, 1}
viX. X Dataset {0, 1} SRHOUghverteX.
vix.y Dataset {0, 1}
vtx.z Dataset {0, 1}

Using HEP_HPC ntuple library to write HDF5 files

e \We have a C++ library hep_hpc on BitBucket to help write HDF5 files.
e \We have written an art module, HDFMaker, to be used in the NOvVA workflow

that also creates the CAF files.
o https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/HDF5Maker
o This module writes one HDF5 tabular file per job. The job is run on the Fermi grid nodes and
one small HDF5 file corresponding to each art-ROOT input file is generated. This results in
thousands of small HDF5 files.
e NOVA has the ownership of this module now, and their use of HEP_HPC
ntuple library has evolved much.
e An example of using HEP_HPC code is available here:
https://bitbucket.org/fnalscdcomputationalscience/hep hpc/src/master/exampl
es/make_ntuple_file.cc

https://cdcvs.fnal.gov/redmine/projects/novaart/repository/show/trunk/HDF5Maker
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/examples/make_ntuple_file.cc
https://bitbucket.org/fnalscdcomputationalscience/hep_hpc/src/master/examples/make_ntuple_file.cc

Concatenating thousands of HDF5 files

The NOvVA data consists of millions and millions of events that are grouped in
hundreds to thousands of small HDF5 files.

e \We have worked on a scalable parallel 10 utility program to concatenate large
number of HDF5 files.
a. Parallelism beyond number of files
b. Use striping and parallel 10 for improved performance

e The utility is an MPI program, where input file(s) are evenly distributed among
all MPI ranks.

e It has options for independent and collective modes for reads and writes

e The HDF5-related tuning includes adjusting metadata cache size to 128 MiB,
collective metadata 10 mode, in-memory |10, data chunk size and data
storage layout adjustments.

PandAna Framework

e \We are developing a framework, PandAna, to facilitate easy-to-use, scalable
and high- performance analysis code.
e PandAna supports parallel reading of HDF5 files, which have our type of
schema.
e Each table has an additional column used to support load-balancing for
parallel reading.
e Each MPI process processes a portion of each table that is used.
e Many analyses do not use every table in a large dataset.
® PandAna will read from only the tables used in your analysis program.
e Many analyses do not use every column in each table that is used.

® PandAna will read only those columns that are actually needed.

More PandAna

e Analysis code is written (almost) exactly as in a serial program; parallelism is
implicit.

e Analysis code sees a pandas.DataFrame for each table, carrying only
columns that will be used.
— All needed data is in some dataframe.
— No data are duplicated between processes.
— Data are distributed to assure that no event is split across processes.

PandAna is still under development.

Some near future plans

We will be working with DUNE, CMS and ATLAS

e DUNE has already adopted NOvA's CAF, and is looking to use PandAna

e |Initiating discussions with Coffea project team
e ATLAS collaborators in our SciDAC project are also interested in using
PandAna approach,

o We have an example program that uses uproot to read a CMS nanoaod “flat ntuple” and write
our style of HDF5 file.

o The generic equivalent is a fairly obvious modification. Something like it could be written for an
ATLAS equivalent of the nanoaod.

