

Non-Perturbative QCD at $\mathrm{e}^{+} \mathrm{e}^{-} B$-Factories

Snowmass 2021 - EF05 Mini-Workshop on Non-Perturbative Uncertainties

## Non-Perturbative QCD at $\mathrm{e}^{+} \mathrm{e}^{-} B$-Factories

## 1. Simulation of Signal Processes



> 3. Calculation of Matrix
> Elements / Decay rates to determine fundamental parameters


| 4. Data-driven |
| :---: |
| improved simulations |

5. How can Belle II help?

## Non-Perturbative QCD at e+e- $B$-Factories

1. Simulation of Signal Processes


> 3. Calculation of Matrix Elements / Decay rates to determine fundamental parameters
 help?

## Non-perturbative QCD in the Simulation of Backgrounds

Non-perturbative QCD in background processes:


| Toolbox: |
| :---: |
| 1. EvtGen + Pythia8 |
| 2. KKMC + Pythia8 + EvtGen |

https://cds.cern.ch/record/591258/files/0211132.pdf
Precision calculation for $e^{+} e^{-} \rightarrow 2 f$ : the $\mathcal{K} \mathcal{K}$ MC project*
B.F.L. Ward ${ }^{\text {a }}$ and S. Jadach ${ }^{b}$ and Z. Was ${ }^{b}$
${ }^{\text {a }}$ Department of Physics and Astronomy, University of Tennessee,
Knoxville, Tennessee 37996-1200, USA
${ }^{\text {b }}$ Henryk Niewodniczanski Institute of Nuclear Physics
ul. Radzikowskiego 152, 31-342 Cracow, Poland
We present the current status of the coherent exclusive (CEEX) realization of the YFS theory for the processes in
$e^{+} e^{-} \rightarrow 2 f$ via the $\mathcal{K} \mathcal{K}$ MC. We give a brief summary of the CEEX theory in comparison to the older (EEX) exclu-
sive exponentiation theory and illustrate recent theoretical results relevant to the LEP2 and LC physics programs.
UTHEP-02-0901
Sept, 2002

1. Simulation of generic B-meson decays

2. Simulation of continuum processes


## Into the tool shed: EvtGen \& Pythia8

## Many analyses need generic B-Meson decay samples

* Simulated as mixture of exclusive modes


Explicit form factor models are included; parameters from measurements (combined with Lattice information if available)

As you can imagine it's a nightmare to keep these up-to-date

Recently started working on interface with PDG, but extremely challenging to keep things in sync.


## Into the tool shed: EvtGen \& Pythia8

## Many analyses need generic B-Meson decay samples

* Pythia8 hadronized modes make up ca. 48\% (!) of all simulated decays

| 1594 | \# Lam_c x / Sigma_c X 4.0 \% |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1595 | \# |  |  |  |  |
| 1596 | 0.010520663 anti-cd_0 ud_0 |  |  | PYTHIA | $23 ;$ |
| 1597 | 0.021041421 anti-cd_1 ud_1 |  |  | PYTHIA 23; |  |
| 1598 |  |  |  |  |  |
| 1599 | \# Xi_c x 2.5\% |  |  |  |  |
| 1600 | \# |  |  |  |  |
| 1601 | 0.002869298 anti-cs_0 ud_0 |  |  | PYTHIA | 23; |
| 1602 | 0.005738595 anti-cs_1 ud_1 |  |  | PYTHIA | $23 ;$ |
| 1603 |  |  |  |  |  |
| 1604 | 0.258091538 u | anti-d | anti-c d | PYTHIA | 48; |
| 1605 | 0.043995612 u | anti-d | anti-c d | PYTHIA | 13; |
| 1606 | 0.020084989 u | anti-s | anti-c d | PYTHIA | 13; |
| 1607 | 0.017215691 u | anti-c | anti-d d | PYTHIA | 48; |
| 1608 | 0.000860770 u | anti-c | anti-s d | PYTHIA | 48 ; |
| 1609 | \#lange - try to crank up the psi production... |  |  |  |  |
| 1610 | 0.070775534 c | anti-s | anti-c d | PYTHIA | 13; |
| 1611 | 0.005738595 c | anti-d | anti-c d | PYTHIA | 13; |
| 1612 | 0.002869298 u | anti-d | anti-u d | PYTHIA | 48; |
| 1613 | 0.003825730 c | anti-s | anti-u d | PYTHIA | 48; |
| 1614 | \# JGS 11/5/02 This and similar a few lines above have been divided by two |  |  |  |  |
| 1615 | \# to solve a double-counting problem for this channel |  |  |  |  |
| 1616 | 0.001960649 u | anti-u | anti-d d | PYTHIA | 48; |
| 1617 | 0.000066973 d | anti-d | anti-d d | PYTHIA | 48; |
| 1618 | 0.000086068 s | anti-s | anti-d d | PYTHIA | 48; |
| 1619 | 0.002104095 u | anti-u | anti-s d | PYTHIA | 48; |
| 1620 | 0.001721541 d | anti-d | anti-s d | PYTHIA | 48; |
| 1621 | 0.001434649 s | anti-s | anti-s d | PYTHIA | 48; |
| 1622 | 0.004782163 anti-s | d |  | PYTHIA | 32; |

## Modes for Matrix Element Processing

Some decays can be treated better than what pure phase space allows, by reweighting with appropriate matrix e signaled by a nonvanishing meMode ( ) value for a decay mode in the particle data table. The list of allowed poss introduced, and most have been moved for better consistency. Here is the list of currently allowed meMode( ) co

- 0 : pure phase space of produced particles ("default"); input of partons is allowed and then the partonic con
- 1 : omega and phi $\rightarrow$ pi+ pi- piO
- 2 : polarization in $V \rightarrow P S+P S(V=$ vector, $P S=$ pseudoscalar $)$, when $V$ is produced by $P S \rightarrow P S+V$ or $F$
- 11 : Dalitz decay into one particle, in addition to the lepton pair (also allowed to specify a quark-antiquark $p$ i
- 12 : Dalitz decay into two or more particles in addition to the lepton pair
- 13 : double Dalitz decay into two lepton pairs
- 21 : decay to phase space, but weight up neutrino_tau spectrum in tau decay
- 22 : weak decay; if there is a quark spectator system it collapses to one hadron; for leptonic/semileptonic $d$
- 23 : as 22 , but require at least three particles in decay
- 31 : decays of type $B \rightarrow$ gamma $X$, very primitive simulation where $X$ is given in terms of its flavour content spectrum is weighted up relative to pure phase space
- 42-50 : turn partons into a random number of hadrons, picked according to a Poissonian with average val new try with another multiplicity if the sum of daughter masses exceed the mother one
- 52-60 : as 42-50, with multiplicity between code - 50 and 10 , but avoid already explicitly listed non-parto
- $62-70$ : as $42-50$, but fixed multiplicity code -60
- 72-80 : as 42-50, but fixed multiplicity code-70, and avoid already explicitly listed non-partonic channel
- 91 : decay to $q$ qbar or $g g$, which should shower and hadronize
- 92 : decay onium to $g g$ g or $g g$ gamma (with matrix element), which should shower and hadronize
- 93 : decay of colour singlet to $q$ qbar plus another singlet, flat in phase space (and arbitrarily ordered), whe
- 94 : same as 93 , but weighted with V-A weak matrix element if the decay chain is of the type neutrino Irarr;
- 100 - : reserved for the description of partial widths of resonances


## KKMC \& Pythia8 \& EvtGen

## Belle II Setup:

EvtGen


PYTHIA

Belle Setup: Pythia + EvtGen



## Belle Pythia6 Parameters

| Belle used Pythia 6 with custom tunings |  |
| :---: | :---: |
| JetSetPar PARJ(21)=0.28 | Default 0.36 |
| JetSetPar PARJ(25)=0.27 | Default 1 |
| JetSetPar PARJ(26)=0.12 | Default 0.4 |
| JetSetPar PARJ(33)=0.3 | Default 0.8 |
| JetSetPar PARJ(35)=1.0 | Default $=$ PARJ (33) |
| JetSetPar PARJ(41)=0.32 | Default 0.3 |
| JetSetPar PARJ(42)=0.62 | Default 0.58 |
| JetSetPar PARJ(82)=0.38 | Default 0.29 |
| JetSetPar PARJ(82)=0.76 | Default 1 |
| JetSetPar PARP(2)=4.0 | Default 10 |
| JetSetPar MSTP(141)=1 | Default 0 |
| JetSetPar MSTP(171)=1 | Default 0 |
| JetSetPar MSTJ(104)=4 | Default 5 |
| Continuum q $\bar{q}$ was generated using the evtgen model PYCON Decay vpho |  |
| \#duscbt e mu tau |  |
| 1.0 PYCONT 000100000000 ; |  |
| Enddecay |  |



## Belle II Translation

## Bellell uses Pythia 8

$\rightarrow$ First challenge is to translate the Belle tunings from Pythia 6 to Pythia 8

Current Proposal (by Hulya Atmacan):
PythiaBothParam StringFlav:etaSup=0.27
PythiaBothParam StringFlav:etaPrimeSup=0.12
PythiaBothParam StringFragmentation:stopMass=1.1 PythiaBothParam StringZ:aLund=0.32
PythiaBothParam StringZ:bLund=0.62
PythiaBothParam StringZ:usePetersonC=off
PythiaBothParam StringZ:usePetersonB=off
PythiaBothParam StringZ:usePetersonH=off
PythiaBothParam StringZ:rFactC=1.0
PythiaBothParam StringPT:sigma $=0.4$
PythiaBothParam TimeShower:pTmin $=0.38$

## Plan to use recorded Belle II (\& maybe Belle) data to produce proper tune

| parameters | particles | kinematic <br> variables |
| :---: | :---: | :---: |
| StringFlav:etaSup <br> StringFlav:etaPrimeSup <br> StringFragmentation:stopMass <br> StringZ:aLund <br> StringZ:bLund <br> StringZ:rFactC <br> StringPT:sigma <br> StringPT:enhancedFraction <br> StringPT:enhancedWidth <br> StringFlav:probStoUD <br> StringZ:aExtraSQuark <br> StringZ:aExtraDiquark <br> StringFlav:mesonUDvector <br> StringFlav:mesonSvector | $\begin{aligned} & \pi^{+}, \pi^{-}, \pi^{0} \\ & K^{+}, K^{-}, \Lambda \\ & \eta, \eta^{\prime}, \gamma, \bar{p} \\ & D^{0}, D_{0}^{*}, \gamma \end{aligned}$ | $z, \boldsymbol{p}_{t}$ <br> multiplicities thrust , $\boldsymbol{R}_{2}$ |

## Full EvtGen + Pythia8 Tuning

Since for generic B decays only about $50 \%$ of all B mesons are hadronized via Pythia, possible that applying off-resonance tuning parameters might be inadequate.

* Long-standing idea: carry out a proper tuning using the Professor package (https://professor.hepforge.org/ by Holger Schulz and Andy Buckley)



Not much progress on this.
Example Inputs for such a tune:

- Measurement of the average $\phi$ multiplicity in $B$ meson decay PRD 69, $052005(2004)^{1}$
- Study of inclusice $B^{-}$and $\bar{B}^{0}$ decays to flavor-tagged $D, D_{s}$ and $\Lambda_{c}^{+}$PRD 75, $072002(2007)^{1}$
- Study of Inclusive Production of Charmonium Mesons in $B$ Decay http://arxiv.org/abs/hep-ex/0207097 ${ }^{2}$
- Measurement of $D_{s}^{+}$and $D_{s}^{*+}$ production in $B$ decays and from continuum $e^{+} e^{-}$annihilations at $\sqrt{s}=10.6$ GeV , hep-ex/0107060
- Study of semi-inclusive production of $\eta^{\prime}$ mesons in $B$ decays, hep-ex/0109034
- Study of high momentum $\eta^{\prime}$ production in $B \rightarrow \eta^{\prime} X_{s}$, PRL 93, 061801 (2004)

[^0]
## Non-Perturbative QCD at $\mathrm{e}^{+} \mathrm{e}^{-} B$-Factories

1. Simulation of Signal Processes


> 3. Calculation of Matrix Elements / Decay rates to determine fundamental parameters

5. How can Belle II help?

## Going Hybrid: $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$

Many measurements target inclusive decays

- $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ with $X_{u} \in\left[\pi, \rho, \omega, \eta, \eta^{\prime}\right.$, non-resonant decays, $\left.\ldots\right]$
- $B \rightarrow X_{s} \gamma$ or $B \rightarrow X_{s} \ell \ell$ with $X_{s} \in\left[K^{*}, K \pi\right.$, non-resonant, $\left.\ldots\right]$


Simulated as mix of exclusive \& inclusive processes
Inclusive: Simulate $X$ system with kinematic properties following (N)NLO calculation w/ non-perturbative QCD input (e.g. from auxiliary measurements)

Hadronizied with Pythia / JETSET
Hybrid Approach: Originally proposed by Phys. Rev. D 41, 1496

$$
\begin{aligned}
& \Delta \mathcal{B}_{i j k}^{\mathrm{incl}}=\Delta \mathcal{B}_{i j k}^{\mathrm{excl}}+w_{i j k} \times \Delta \mathcal{B}_{i j k}^{\mathrm{incl}} \\
& q^{2}=[0,2.5,5,7.5,10,12.5,15,20,25] \mathrm{GeV}^{2} \\
& E_{\ell}^{B}=[0,0.5,1,1.25,1.5,1.75,2,2.25,3] \mathrm{GeV}, \\
& M_{X}=[0,1.4,1.6,1.8,2,2.5,3,3.5] \mathrm{GeV}
\end{aligned}
$$


(Full Belle dataset)



## Going Hybrid: $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$

## Many measurements target inclusive decays

- $B \rightarrow X_{u} \ell \bar{\nu}_{\ell}$ with $X_{u} \in\left[\pi, \rho, \omega, \eta, \eta^{\prime}\right.$, non-resonant decays, $\left.\ldots\right]$
- $B \rightarrow X_{s} \gamma$ or $B \rightarrow X_{s} \ell \ell$ with $X_{s} \in\left[K^{*}, K \pi\right.$, non-resonant, $\left.\ldots\right]$


Simulated as mix of exclusive \& inclusive processes<br>Inclusive: Simulate $X$ system with kinematic properties following (N)NLO calculation w/ non-perturbative QCD input (e.g. from auxiliary measurements)<br>Hadronizied with Pythia / JETSET<br>Hybrid Approach: Originally proposed by Phys. Rev. D 41, 1496

## Assessment of uncertainties:

* Change excl. FFs and incl. admixture
* Changes to underlying model parameters
* Vary Pythia / JETSET parameters that affect e.g. scalar vs. vector final states, suppression of s quark production, $\eta$-meson suppression

| mesonUDvector, <br> mesonSvector, <br> mesonCvector | for the relative production ratio vec- <br> tor/pseudoscalar for light $(\mathrm{u}, \mathrm{d})$, s and c <br> mesons |
| :--- | :--- |
| probStoUD | the suppression of s quark production rela- <br> tive to $u$ or d production. |
| probQQtoQ | parameter for the suppression of diquark <br> production relative to quark production, i.e. <br> of baryon relative to meson production |
| etaSup | the $\eta$-meson suppression |

## Going SEM: $B \rightarrow X_{s} \ell \ell$ or $B \rightarrow X_{s} \gamma$

## Inclusive measurements sometimes uses so-called SEM approaches:

## Sum over exclusive modes

Targets about 70\% of all

## $B \rightarrow X_{s} \ell \ell$ decays

|  |  |
| :---: | :--- |
| Reconstructed Mode | Reconstructed As |
| 1 | $B^{0} \rightarrow K_{s}^{0} \mu^{+} \mu^{-}$ |
| 2 | $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$ |
| 3 | $B^{0} \rightarrow K_{s}^{0} e^{+} e^{-}$ |
| 4 | $B^{+} \rightarrow K^{+} e^{+} e^{-}$ |
| 5 | $B^{0} \rightarrow K^{* 0}\left(K_{s}^{0} \pi^{0}\right) \mu^{+} \mu^{-}$ |
| 6 | $B^{+} \rightarrow K^{*+}\left(K^{+} \pi^{0}\right) \mu^{+} \mu^{-}$ |
| 7 | $B^{+} \rightarrow K^{++}\left(K_{s}^{0} \pi^{+}\right) \mu^{+} \mu^{-}$ |
| 8 | $B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$ |
| 9 | $B^{0} \rightarrow K^{* 0}\left(K_{s}^{0} \pi^{0}\right) e^{+} e^{-}$ |
| 10 | $B^{+} \rightarrow K^{*+}\left(K^{+} \pi^{0}\right) e^{+} e^{-}$ |
| 11 | $B^{+} \rightarrow K^{++}\left(K_{s}^{0} \pi^{+}\right) e^{+} e^{-}$ |
| 12 | $B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) e^{+} e^{-}$ |
| 13 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0} \mu^{+} \mu^{-}$ |
| 14 | $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 15 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ |
| 16 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ |
| 17 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0} e^{+} e^{-}$ |
| 18 | $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 19 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} e^{+} e^{-}$ |
| 20 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} e^{+} e^{-}$ |
| 21 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 22 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 23 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} \mu^{+} \mu^{-}$ |
| 24 | $B^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} \mu^{+} \mu^{-}$ |
| 25 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 26 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 27 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} e^{+} e^{-}$ |
| 28 | $B^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} e^{+} e^{-}$ |

## Going SEM: $B \rightarrow X_{s} \ell \ell$ or $B \rightarrow X_{s} \gamma$

## Inclusive measurements sometimes uses so-called SEM approaches:

Sum over exclusive modes

| Targets about 70\% of all $B \rightarrow X_{s} \ell \ell$ decays |  |
| :---: | :---: |
| Reconstructed Mode | Reconstructed As |
| 1 | $B^{0} \rightarrow K_{s}^{0} \mu^{+} \mu^{-}$ |
| 2 | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$ |
| 3 | $B^{0} \rightarrow K_{s}^{0} e^{+} e^{-}$ |
| 4 | $B^{+} \rightarrow K^{+} e^{+} e^{-}$ |
| 5 | $B^{0} \rightarrow K^{* 0}\left(K_{S}^{0} \pi^{0}\right) \mu^{+} \mu^{-}$ |
| 6 | $B^{+} \rightarrow K^{*+}\left(K^{+} \pi^{0}\right) \mu^{+} \mu^{-}$ |
| 7 | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{*+}\left(K_{S}^{0} \pi^{+}\right) \mu^{+} \mu^{-}$ |
| 8 | $B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$ |
| 9 | $B^{0} \rightarrow K^{* 0}\left(K_{S}^{0} \pi^{0}\right) e^{+} e^{-}$ |
| 10 | $B^{+} \rightarrow K^{*+}\left(K^{+} \pi^{0}\right) e^{+} e^{-}$ |
| 11 | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{*+}\left(K_{s}^{0} \pi^{+}\right) e^{+} e^{-}$ |
| 12 | $B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) e^{+} e^{-}$ |
| 13 | $B^{+} \rightarrow K_{S}^{0} \pi^{+} \pi^{0} \mu^{+} \mu^{-}$ |
| 14 | $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 15 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ |
| 16 | $\mathrm{B}^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ |
| 17 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0} e^{+} e^{-}$ |
| 18 | $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 19 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} e^{+} e^{-}$ |
| 20 | $\mathrm{B}^{+} \rightarrow K^{+} \pi^{+} \pi^{-} e^{+} e^{-}$ |
| 21 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 22 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 23 | $\mathrm{B}^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} \mu^{+} \mu^{-}$ |
| 24 | $\mathrm{B}^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} \mu^{+} \mu^{-}$ |
| 25 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 26 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 27 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} e^{+} e^{-}$ |
| 28 | $B^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} e^{+} e^{-}$ |

## Going SEM: $B \rightarrow X_{s} \ell \ell$ or $B \rightarrow X_{s} \gamma$

## Inclusive measurements sometimes uses so-called SEM approaches:

## Sum over exclusive modes

Same approach: simulated as mix of exclusive \& inclusive processes inclusive $X_{s}$ system hadronized using Pythia / JETSET

Efficiency strongly dependent on final state multiplicity / final state mode

| Reco | qbin0 |  |  |
| :---: | :---: | :---: | :---: |
| Mode | $N_{\text {gen }}$ | $N_{\text {rec }}$ | $\varepsilon$ |
| :"1" | 48.4 | 1.5 | 0.0031" |
| 2' | 73.8 | " 9.1 " |  |
| 3 | 49.6 | 3.5 | $0.070 \pm 0.036$ |
| 4 | 76.4 | 20.4 | $0.267 \pm 0.051$ |
| '" | 80."'9" | " 0.7 |  |
| 6 | 84.1 | 3.4 | $0.040 \pm 0.021$ |
| 7 | 152.4 | 3.4 | $0.023 \pm 0.012$ |
| 8 | 143.4 | 12.2 | $0.085 \pm 0.023$ |
| 9 | 81.5 | 1.9 | $0.023 \pm 0.017$ |
| 10 | 85.5 | 8.2 | $0.095 \pm 0.032$ |
| 11 | 156.1 | 7.3 | $0.047 \pm 0.017$ |
| 12 | 144.9 | 26.3 | $0.182 \pm 0.032$ |
| :"13' | 95.7 | 0.7 | $0.007 \pm 0.009$ |
| "14" | "113.8" | " 3.4 " | 0.030 ${ }^{\text {a }}$ |
| 15 | 95.3 | 1.4 | $0.014 \pm 0.012$ |
| 16 | 80.6 | 5.2 | $0.065 \pm 0.027$ |
| 17 | 92.5 | 1.5 | $0.016 \pm 0.013$ |
| 18 | 109.7 | 7.5 | $0.068 \pm 0.024$ |
| 19 | 92.1 | 2.9 | $0.031 \pm 0.018$ |
| 20 | 78.1 | 10.7 | $0.137 \pm 0.039$ |


| N |  | qbin0 |  |  | qbin1 |  |  |
| :---: | :---: | ---: | :---: | :---: | ---: | :---: | :---: |
| pions | modes | $N_{\text {gen }}$ | $N_{\text {rec }}$ | $\varepsilon$ | $N_{\text {gen }}$ | $N_{\text {rec }}$ | $\varepsilon$ |
| 0 | $1-4$ | 248.1 | 34.5 | $0.139 \pm 0.022$ | 105.9 | 10.3 | $0.097 \pm 0.029$ |
| 1 | $5-12$ | 928.9 | 63.3 | $0.068 \pm 0.008$ | 648.7 | 35.2 | $0.054 \pm 0.009$ |
| 2 | $13-20$ | 757.7 | 33.2 | $0.068 \pm 0.008$ | 569.2 | 20.1 | $0.035 \pm 0.008$ |

Targets about 70\% of all
$B \rightarrow X_{s} \ell \ell$ decays

| Reconstructed Mode | Reconstructed As |
| :---: | :---: |
| :"-"1-"-"-"-" |  |
| -"-"2"-"-"-". |  |
| 3 | $B^{0} \rightarrow K_{S}^{0} e^{+} e^{-}$ |
| $\frac{4}{4}$ | $B^{+} \rightarrow K^{+} e^{+} e^{-}$ |
| 5 | $B^{0} \rightarrow K^{* 0}\left(K_{s}^{0} \pi^{0}\right) \mu^{+} \mu^{-}$ |
| 6 | $B^{+} \rightarrow K^{*+}\left(K^{+} \pi^{0}\right) \mu^{+} \mu^{-}$ |
| 7 | $B^{+} \rightarrow K^{*+}\left(K_{s}^{0} \pi^{+}\right) \mu^{+} \mu^{-}$ |
| 8 | $B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$ |
| 9 | $B^{0} \rightarrow K^{* 0}\left(K_{s}^{0} \pi^{0}\right) e^{+} e^{-}$ |
| 10 | $B^{+} \rightarrow K^{*+}\left(K^{+} \pi^{0}\right) e^{+} e^{-}$ |
| 11 | $B^{+} \rightarrow K^{*+}\left(K_{s}^{0} \pi^{+}\right) e^{+} e^{-}$ |
| 12 | $B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) e^{+} e^{-}$ |
| 13 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0} \mu^{+} \mu^{-}$ |
| 14" |  |
| 15 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ |
| 16 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ |
| 17 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0} e^{+} e^{-}$ |
| 18 | $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 19 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} e^{+} e^{-}$ |
| 20 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} e^{+} e^{-}$ |
| 21 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 22 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 23 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} \mu^{+} \mu^{-}$ |
| 24 | $B^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} \mu^{+} \mu^{-}$ |
| 25 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 26 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 27 | $\mathrm{B}^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} e^{+} e^{-}$ |
| 28 | $B^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} e^{+} e^{-}$ |

## Going SEM: $B \rightarrow X_{s} \ell \ell$ or $B \rightarrow X_{s} \gamma$

## Inclusive measurements sometimes uses so-called SEM approaches: <br> Sum over exclusive modes

Targets about $70 \%$ of all
$B \rightarrow X_{s} \ell \ell$ decays

|  |  |
| :---: | :--- |
| Reconstructed Mode | Reconstructed As |
| 1 | $B^{0} \rightarrow K_{s}^{0} \mu^{+} \mu^{-}$ |
| 2 | $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$ |
| 3 | $B^{0} \rightarrow K_{s}^{0} e^{+} e^{-}$ |
| 4 | $B^{+} \rightarrow K^{+} e^{+} e^{-}$ |
| 5 | $B^{0} \rightarrow K^{* 0}\left(K_{s}^{0} \pi^{0}\right) \mu^{+} \mu^{-}$ |
| 6 | $B^{+} \rightarrow K^{*+}\left(K^{+} \pi^{0}\right) \mu^{+} \mu^{-}$ |
| 7 | $B^{+} \rightarrow K^{*+}\left(K_{s}^{0} \pi^{+}\right) \mu^{+} \mu^{-}$ |
| 8 | $B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$ |
| 9 | $B^{0} \rightarrow K^{* 0}\left(K_{s}^{0} \pi^{0}\right) e^{+} e^{-}$ |
| 10 | $B^{+} \rightarrow K^{*+}\left(K^{+} \pi^{0}\right) e^{+} e^{-}$ |
| 11 | $B^{+} \rightarrow K^{*+}\left(K_{s}^{0} \pi^{+}\right) e^{+} e^{-}$ |
| 12 | $B^{0} \rightarrow K^{* 0}\left(K^{+} \pi^{-}\right) e^{+} e^{-}$ |
| 13 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0} \mu^{+} \mu^{-}$ |
| 14 | $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 15 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ |
| 16 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \mu^{+} \mu^{-}$ |
| 17 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0} e^{+} e^{-}$ |
| 18 | $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 19 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} e^{+} e^{-}$ |
| 20 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} e^{+} e^{-}$ |
| 21 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 22 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$ |
| 23 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} \mu^{+} \mu^{-}$ |
| 24 | $B^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} \mu^{+} \mu^{-}$ |
| 25 | $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 27 | $B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{0} e^{+} e^{-}$ |
| 28 | $B^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} e^{+} e^{-}$ |
|  | $B^{0} \rightarrow K^{+} \pi^{+} \pi^{-} \pi^{-} e^{+} e^{-}$ |
|  |  |
| 2 |  |
| 2 |  |

## Non-Perturbative QCD at $\mathrm{e}^{+} \mathrm{e}^{-} B$-Factories

1. Simulation of Signal Processes


> 3. Calculation of Matrix Elements / Decay rates to determine fundamental parameters
2. Simulation of Background Processes


## Leaving simulations behind

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \quad(\mathrm{q} \in\{\mathrm{u}, \mathrm{~d}, \mathrm{~s}, \mathrm{c}\})
$$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Upsilon(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{~B}}
$$

Phys. Rev. D 101, 032007 (2020)



## Leaving simulations behind





## Leaving simulations behind



Train a classifier to distinguish simulated and recorded continuum processes ( $e^{+} e^{-} \rightarrow q \bar{q}$, $e^{+} e^{-} \rightarrow c \bar{c}$, QED/Two-Photon)

Can use classifier output $p \in[0,1)$ to correct simulated distributions with a weight:

$$
w=\frac{p}{1-p}
$$

Benefit: Takes into account underlying correlations

\# 22

## Leaving simulations behind



Train a classifier to distinguish simulated and recorded continuum processes ( $e^{+} e^{-} \rightarrow q \bar{q}$,
$e^{+} e^{-} \rightarrow c \bar{c}$, QED/Two-Photon)
Can use classifier output $p \in[0,1)$ to correct simulated distributions with a weight:

$$
w=\frac{p}{1-p}
$$

Benefit: Takes into account underlying correlations



## Leaving simulations behind

Train a classifier to distinguish simulated and recorded continuum processes $\left(e^{+} e^{-} \rightarrow q \bar{q}\right.$,


$$
e^{+} e^{-} \rightarrow c \bar{c}, \text { QED/Two-Photon) }
$$

Can use classifier output $p \in[0,1)$ to correct simulated distributions with a weight:

$$
w=\frac{p}{1-p}
$$

Benefit: Takes into account underlying correlations

## Assess uncertainty of correction via bootstrapping the data and derive ensembles of correction weights.




## Non-Perturbative QCD at $\mathrm{e}^{+} \mathrm{e}^{-} B$-Factories

## 1. Simulation of Signal Processes



## 2. Simulation of Background Processes

> 3. Calculation of Matrix Elements / Decay rates to determine fundamental parameters

## $\left|V_{q b}\right|=\sqrt{\frac{\mathcal{B}\left(\bar{B} \rightarrow X_{q} \ell \bar{\nu}_{\ell}\right)}{\tau \Gamma\left(\bar{B} \rightarrow X_{q} \ell \bar{\nu}_{\ell}\right)}}$



## Future and past data to improve simulations

Essentially most tuning we did in the past, built upon internal data with the obvious drawbacks:

* Not reproducible, not available for outsiders
(My personal opinion): I think we should make sure to change this to preserve our physics results

Large available Belle data set, that can be processed in the Belle II software framework:

## B2BII https://arxiv.org/pdf/1810.00019.pdf

Data conversion from Belle to Belle II
Moritz Gelb ${ }^{\mathbf{1}}$. Thomas Keck ${ }^{\mathbf{1}}$ • Markus Prim ${ }^{\mathbf{1}}$ • Hulya Atmacan ${ }^{2}$ • Jochen Gemmler ${ }^{1}$ • Ryosuke Itoh ${ }^{3}$ • Bastian Kronenbitter ${ }^{\mathbf{1} \star}$. Thomas Kuhr ${ }^{4}$ • Matic Lubej ${ }^{5}$. Felix Metzner ${ }^{\mathbf{1}}$. Chanseok Park ${ }^{6}$. Seokhee Park ${ }^{6}$. Christian Pulvermacher ${ }^{1 \star}$ • Martin Ritter ${ }^{4}$ • Anze Zupanc ${ }^{5 \star}$

```
Treasure trove for
tuning; available for all
Belle Il members for
technical work
```

https://arxiv.org/pdf/1306.2895.pdf


## Future and past data to improve simulations

## Essentially most tuning we did in the past, built upon internal data with the obvious drawbacks:

* Not reproducible, not available for outsiders
(My personal opinion): I think we should make sure to change this to preserve our physics results





## Another example: Belle data



Some of these results are in HEPData, but more work likely needed.

WRivet Analysis Cross sections for the reactions $e^{+} e^{-} \rightarrow K_{S}^{0} K_{L}^{0}, K_{S}^{0} K_{L}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K_{S}^{0} \pi^{+} \pi^{-}$,
The BaBar collaboration Lees, J.P.; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev. D89 (2014) 092002, 2014.

Currently main focus at Belle II lies in understanding the detector and beam backgrounds; but eventually we will need to also focus on tuning aspects to achieve the precision we aim for.

## More Information

## Continuum Simulation at Belle II



## Some more inclusive distributions






## Beam backgrounds



Use simulated but also recorded beam backgrounds (from random triggered events) and overlay them with simulated events.


[^0]:    ${ }^{1}$ We have already implemented this analysis in rivet, to be submitted
    ${ }^{2}$ implemented in rivet

