

Non-Perturbative QCD at e+e- B-Factories

Snowmass 2021 – EF05 Mini-Workshop on Non-Perturbative Uncertainties

Florian Bernlochner florian.bernlochner@uni-bonn.de

Non-Perturbative QCD at e⁺e⁻ B-Factories

1. Simulation of Signal Processes

3. Calculation of Matrix Elements / Decay rates to determine fundamental parameters

5. How can Belle II help?

Non-Perturbative QCD at e⁺e⁻ B-Factories

5. How can Belle II help?

Non-perturbative QCD in the Simulation of Backgrounds

Non-perturbative QCD in background processes:

https://cds.cern.ch/record/591258/files/0211132.pdf

Precision calculation for $e^+e^- \rightarrow 2f$: the \mathcal{KK} MC project^{*}

B.F.L. Ward^a and S. Jadach^b and Z. Was^b

^aDepartment of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA

^bHenryk Niewodniczanski Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342 Cracow, Poland

We present the current status of the coherent exclusive (CEEX) realization of the YFS theory for the processes in $e^+e^- \rightarrow 2f$ via the \mathcal{KK} MC. We give a brief summary of the CEEX theory in comparison to the older (EEX) exclusive exponentiation theory and illustrate recent theoretical results relevant to the LEP2 and LC physics programs. UTHEP-02-0901 Sept, 2002

1. Simulation of generic B-meson decays

2. Simulation of continuum processes

4

Into the tool shed: EvtGen & Pythia8

Many analyses need generic B-Meson decay samples

* Simulated as mixture of exclusive modes

Explicit form factor models are included; parameters from measurements (combined with Lattice information if available)

As you can imagine it's a nightmare to keep these up-to-date

Recently started working on interface with PDG, but extremely challenging to keep things in sync.

Into the tool shed: EvtGen & Pythia8

Many analyses need generic B-Meson decay samples

* Pythia8 hadronized modes make up ca. 48% (!) of all simulated decays

Belle Pythia6 Parameters

Belle used Pythia 6 with custom tunings		x 10 ³	3		Off-resonance Data
JetSetPar PARJ(21)=0.28 Default 0.36 JetSetPar PARJ(25)=0.27 Default 1 JetSetPar PARJ(26)=0.12 Default 0.4 JetSetPar PARJ(33)=0.3 Default 0.8	χ^2/dof	2000	- Multiplicity Chg	1	Multiplicity Chg
JetSetPar PARJ(35)=0.3 Default 0.3 $JetSetPar PARJ(41)=0.32 Default 0.3$ $JetSetPar PARJ(42)=0.62 Default 0.58$ $JetSetPar PARJ(82)=0.38 Default 0.29$	χ^2/dof	0 20	CosThrust	0 0.025	0 25 50 CosThrust
JetSetPar PARJ(82)=0.76 Default 1 JetSetPar PARP(2)=4.0 Default 10 JetSetPar MSTP(141)=1 Default 0	χ^2/dof	0 50	- Oblateness vy	0 0.05	-1 0 1 -1 Oblateness
JetSetPar MSTP(171)=1 Default 0 JetSetPar MSTJ(104)=4 Default 5 Continuum qq was generated using the evtgen model PYCON	χ^2/dof	0 50	HeavyJM	0 0.05	0 0.25 0.5 HeavyJM
Decay vpho #duscbt e mutau 1.0 PYCONT 0 0 0 1 0 0 0 0 0 0 0 0 0; Enddecav	χ^2/dof	0 100	- Sphericity System	0 0.05	0 0.25 0.5 Sphericity
	χ^2/dof	0 1000	FoxWolf(2)	0 0.1	0 0.5 1 FoxWolf(2)
 ▼ 0.28 0.26 0.24 0.22 	χ^2/dof	0 500		0 0.025	0 0.5 1 0 y34
0.2 0.18 0.16 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 DAD 1/25)		0	0.2 0.4 σ _q	0	-3 -2 -1

Belle II Translation

 Bellell uses Pythia 8 → First challenge is to translate the Belle tunings from Pythia 6 to Pythia 8 Current Proposal (by Hulya Atmacan): PythiaBothParam StringFlav:etaSup=0.27 PythiaBothParam StringFlav:etaPrimeSup=0.12 	Plan to II (& m produc	o use recorde aybe Belle) c ce proper tur	ed Belle lata to ne
PythiaBothParam StringFragmentation:stopMass=1.1 PythiaBothParam StringZ:aLund=0.32	parameters	particles	kinematic variables
PythiaBothParam StringZ:bLund=0.62 PythiaBothParam StringZ:usePetersonC=off PythiaBothParam StringZ:usePetersonB=off PythiaBothParam StringZ:rFactC=1.0 PythiaBothParam StringPT:sigma = 0.4 PythiaBothParam TimeShower:pTmin = 0.38	StringFlav:etaSupStringFlav:etaPrimeSupStringFragmentation:stopMassStringZ:aLundStringZ:bLundStringZ:rFactCStringPT:sigmaStringPT:enhancedFraction	$egin{array}{c} \pi^+,\pi^-,\pi^0\ K^+,K^-,\Lambda\ \eta,\eta^{\prime},\gamma,\overline{p}\ D^0,D_0^*,\gamma \end{array}$	z , p _t multiplicities thrust , R ₂
As a comparison: Monash 2013 StringZ:aLund = 0.68 StringZ:bLund = 0.98 StringZ:aExtraDiquark = 0.97 StringZ:aExtraSquark = 0.00	StringPT:enhancedWidth StringFlav:probStoUD StringZ:aExtraSQuark StringZ:aExtraDiquark StringFlav:mesonUDvector StringFlav:mesonSvector	Gevorg Karyan B2GM	6 February 2017 Page 2

Not much progress on this.

Full EvtGen + Pythia8 Tuning

Since for generic B decays only about 50% of all B mesons are hadronized via Pythia, possible that applying off-resonance tuning parameters might **be inadequate**.

* Long-standing idea: carry out a proper tuning using the Professor package

(https://professor.hepforge.org/ by Holger Schulz and Andy Buckley)

Example Inputs for such a tune:

- Measurement of the average \u03c6 multiplicity in B meson decay PRD 69, 052005 (2004)¹
- Study of inclusice B⁻ and B
 ⁰ decays to flavor-tagged D, D_s and Λ⁺_c PRD 75, 072002 (2007)¹
- Study of Inclusive Production of Charmonium Mesons in B Decay http://arxiv.org/abs/hep-ex/0207097²
- Measurement of D_s^+ and D_s^{*+} production in B decays and from continuum e^+e^- annihilations at $\sqrt{s} = 10.6$ GeV, hep-ex/0107060
- Study of semi-inclusive production of η' mesons in B decays, hep-ex/0109034
- Study of high momentum η' production in $B \rightarrow \eta' X_s$, PRL 93, 061801 (2004)

¹We have already implemented this analysis in rivet, to be submitted ²implemented in rivet

Not much progress on this.

Non-Perturbative QCD at e⁺e⁻ B-Factories

3. Calculation of Matrix Elements / Decay rates to determine fundamental parameters

5. How can Belle II help?

Going Hybrid: $B \to X_u \ell \bar{\nu}_\ell$

Many measurements target inclusive decays

- $B \to X_u \ell \bar{\nu}_\ell$ with $X_u \in [\pi, \rho, \omega, \eta, \eta', \text{non-resonant decays}, \dots]$
- $B \to X_s \gamma$ or $B \to X_s \ell \ell$ with $X_s \in [K^*, K\pi, \text{non-resonant}, \dots]$

$$\Delta \mathcal{B}_{ijk}^{\text{incl}} = \Delta \mathcal{B}_{ijk}^{\text{excl}} + w_{ijk} \times \Delta \mathcal{B}_{ijk}^{\text{incl}},$$

$$\begin{split} q^2 &= [0, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25] \, \mathrm{GeV}^2 \,, \\ E_\ell^B &= [0, 0.5, 1, 1.25, 1.5, 1.75, 2, 2.25, 3] \, \mathrm{GeV} \,, \\ M_X &= [0, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5] \, \mathrm{GeV} \,. \end{split}$$

(Full Belle dataset)

Going Hybrid: $B \to X_u \ell \bar{\nu}_\ell$

Many measurements target inclusive decays

- $B \to X_u \ell \bar{\nu}_\ell$ with $X_u \in [\pi, \rho, \omega, \eta, \eta',$ non-resonant decays, ...]
- $B \to X_s \gamma$ or $B \to X_s \ell \ell$ with $X_s \in [K^*, K\pi, \text{non-resonant}, \dots]$

Simulated as mix of exclusive & inclusive processes

Inclusive: Simulate *X* system with kinematic properties following (N)NLO calculation w/ non-perturbative QCD input (e.g. from auxiliary measurements)

Hadronizied with Pythia / JETSET

Hybrid Approach: Originally proposed by Phys. Rev. D 41, 1496

mesonUDvector,	for the relative production ratio vec-
mesonSvector,	tor/pseudoscalar for light (u, d), s and c
mesonCvector	mesons
probStoUD	the suppression of s quark production rela-
	tive to u or d production.
probQQtoQ	parameter for the suppression of diquark
	production relative to quark production, i.e.
	of baryon relative to meson production
etaSup	the η -meson suppression
	•

Inclusive measurements sometimes uses so-called **SEM** approaches: Sum over exclusive modes

Targets about **70%** of all $B \to X_s \ell \ell$ decays

Reconstructed Mode	Reconstructed As
1	$B^0 ightarrow K^0_s \ \mu^+ \mu^-$
2	$B^+ \rightarrow K^+ \ \mu^+ \mu^-$
3	$B^0 ightarrow K^0_s \; e^+ e^-$
4	$B^+ \rightarrow K^+ \ e^+ e^-$
5	$B^0 ightarrow K^{st 0} \; (K^0_{\scriptscriptstyle S} \; \pi^0) \mu^+ \mu^-$
6	$B^+ ightarrow K^{*+} \ (K^+ \ \pi^0) \mu^+ \mu^-$
7	$B^+ ightarrow K^{*+} \ (K^0_s \ \pi^+) \mu^+ \mu^-$
8	$B^0 ightarrow K^{*0} \ (K^+ \ \pi^-) \mu^+ \mu^-$
9	$B^0 o K^{*0} \; (K^0_{\scriptscriptstyle S} \; \pi^0) e^+ e^-$
10	$B^+ ightarrow K^{*+} \ (K^+ \ \pi^0) e^+ e^-$
11	$B^+ ightarrow K^{*+} \; (K^0_s \; \pi^+) e^+ e^-$
12	$B^0 ightarrow K^{st 0} \; (K^+ \; \pi^-) e^+ e^-$
13	$B^+ \rightarrow K^0_s \pi^+ \pi^0 \mu^+ \mu^-$
14	$B^0 ightarrow K^+ \pi^- \pi^0 \mu^+ \mu^-$
15	$B^0 ightarrow K^0_s \pi^+ \pi^- \mu^+ \mu^-$
16	$B^+ \rightarrow K^+ \pi^+ \pi^- \mu^+ \mu^-$
17	$B^+ ightarrow K^0_s \ \pi^+ \ \pi^0 \ e^+ e^-$
18	$B^0 ightarrow K^+ \ \pi^- \ \pi^0 \ e^+ e^-$
19	$B^0 ightarrow K^0_s \ \pi^+ \ \pi^- \ e^+ e^-$
20	$B^+ \rightarrow K^+ \pi^+ \pi^- e^+ e^-$
21	$B^{0} \to K^{0}_{s} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$
22	$B^+ \to K^+ \pi^+ \pi^- \pi^0 \mu^+ \mu^-$
23	$B^+ \to K_s^0 \pi^+ \pi^- \pi^+ \mu^+ \mu^-$
24	$B^{0} \to K^{+} \pi^{+} \pi^{-} \pi^{-} \mu^{+} \mu^{-}$
25	$B^{0} \to K^{0}_{s} \pi^{+} \pi^{-} \pi^{0} e^{+}e^{-}$
26	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 e^+ e^-$
27	$B^+ \to K_s^0 \pi^+ \pi^- \pi^+ e^+ e^-$
28	$B^0 \to K^+ \pi^+ \pi^- \pi^- e^+ e^-$

Inclusive measurements sometimes uses so-called **SEM** approaches: Sum over exclusive modes

Same approach: simulated as mix of **exclusive** & **inclusive** processes inclusive X_s system hadronized using Pythia / JETSET

$B \to X_{\rm s} \ell \ell$ decays Reconstructed Mode Reconstructed As $B^0 \rightarrow K^0_s \mu^+ \mu^-$ 1 $B^+ \rightarrow K^+ \mu^+ \mu^-$ 2 3 $B^0 \rightarrow K^0_{\rm s} e^+ e^-$ 4 $B^+ \rightarrow K^+ e^+ e^ B^0 \to K^{*0} \ (K^0_{\rm s} \ \pi^0) \mu^+ \mu^-$ 5 $B^+ \to K^{*+} (K^+ \pi^0) \mu^+ \mu^-$ 6 $B^+ \to K^{*+} \ (K_s^0 \ \pi^+) \mu^+ \mu^-$ 7 $B^0 \rightarrow K^{*0} \ (K^+ \ \pi^-) \mu^+ \mu^-$ 8 $B^0 \to K^{*0} \ (K^0_{\rm s} \ \pi^0) e^+ e^-$ 9 $B^+ \to K^{*+} (K^+ \pi^0) e^+ e^-$ 10 $B^+ \to K^{*+} \ (K_s^0 \ \pi^+) e^+ e^-$ 11 $B^0 \rightarrow K^{*0} (K^+ \pi^-) e^+ e^-$ 12 $B^+ \rightarrow K_s^0 \pi^+ \pi^0 \mu^+ \mu^-$ 13 $B^0 \rightarrow K^+ \pi^- \pi^0 \mu^+ \mu^-$ 14 $B^0 \rightarrow K^0_s \pi^+ \pi^- \mu^+\mu^-$ 15 $B^+ \rightarrow K^+ \pi^+ \pi^- \mu^+ \mu^-$ 16 17 $B^+ \rightarrow K_s^0 \pi^+ \pi^0 e^+ e^ B^0 \rightarrow K^+ \pi^- \pi^0 e^+ e^-$ 18 $B^0 \rightarrow K_s^0 \pi^+ \pi^- e^+ e^-$ 19 $B^+ \rightarrow K^+ \pi^+ \pi^- e^+ e^-$ 20 $B^0 \to K^0_s \pi^+ \pi^- \pi^0 \mu^+ \mu^-$ 21 $B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \mu^+ \mu^-$ 22 $B^+ \rightarrow K_s^0 \pi^+ \pi^- \pi^+ \mu^+ \mu^-$ 23 $B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \mu^+ \mu^-$ 24 $B^0 \to K_s^0 \pi^+ \pi^- \pi^0 e^+ e^-$ 25 $B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 e^+ e^-$ 26 $B^+ \rightarrow K_c^0 \pi^+ \pi^- \pi^+ e^+ e^-$ 27 $B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- e^+ e^-$ 28

Inclusive measurements sometimes uses so-called **SEM** approaches: Sum over exclusive modes

Same approach: simulated as mix of **exclusive** & **inclusive** processes inclusive X_s system hadronized using Pythia / JETSET

Efficiency strongly dependent on final state multiplicity / final state mode

Reco	qbin0							
Mode	N _{gen}	N _{rec}	arepsilon					
1	48.4	1.5	0.031 ± 0.025					
2	73.8	9.1	0.123 ± 0.038					
3	49.6	3.5	0.070 ± 0.036					
4	76.4	20.4	0.267 ± 0.051					
5	80.9	0.7	0.009 ± 0.011					
6	84.1	3.4	0.040 ± 0.021					
7	152.4	3.4	0.023 ± 0.012					
8	143.4	12.2	0.085 ± 0.023					
9	81.5	1.9	0.023 ± 0.017					
10	85.5	8.2	0.095 ± 0.032					
11	156.1	7.3	0.047 ± 0.017					
12	144.9	26.3	0.182 ± 0.032					
13	95.7	0.7	0.007 ± 0.009					
14	113.8	3.4	0.030 ± 0.016					
15	95.3	1.4	0.014 ± 0.012					
16	80.6	5.2	0.065 ± 0.027					
17	92.5	1.5	0.016 ± 0.013					
18	109.7	7.5	0.068 ± 0.024					
19	92.1	2.9	0.031 ± 0.018					
20	78.1	10.7	0.137 ± 0.039					

N		qbin0				qbi	n1
pions	modes	Ngen	$N_{\rm rec}$	ε	Ngen	$N_{\rm rec}$	ε
0	1–4	248.1	34.5	0.139 ± 0.022	105.9	10.3	0.097 ± 0.029
1	5–12	928.9	63.3	0.068 ± 0.008	648.7	35.2	0.054 ± 0.009
2	13–20	757.7	33.2	0.068 ± 0.008	569.2	20.1	0.035 ± 0.008

Targets about **70%** of all $B \rightarrow X_s \ell \ell$ decays

Reconstructed Mode	Reconstructed As
1	$B^0 \rightarrow K^0_S \ \mu^+ \mu^-$
2	$B^+ \rightarrow K^+ \ \mu^+ \mu^-$
3	$B^0 ightarrow K^0_{ m s} \; e^+ e^-$
4	$B^+ ightarrow K^+ \; e^+ e^-$
5	$B^0 ightarrow K^{st 0} \; (K^0_s \; \pi^0) \mu^+ \mu^-$
6	$B^+ \! ightarrow K^{*+} \; (K^+ \; \pi^0) \mu^+ \mu^-$
7	$B^+ \! ightarrow K^{*+} \; (K^0_{\scriptscriptstyle S} \; \pi^+) \mu^+ \mu^-$
8	$B^0 ightarrow K^{st 0} \; (K^+ \; \pi^-) \mu^+ \mu^-$
9	$B^0 ightarrow K^{st 0} \; (K^0_s \; \pi^0) e^+ e^-$
10	$B^+ \! ightarrow K^{*+}~(K^+~\pi^0) e^+ e^-$
11	$B^+ \! ightarrow K^{*+} \; (K^0_s \; \pi^+) e^+ e^-$
12	$B^0 ightarrow {\cal K}^{st 0} \; ({\cal K}^+ \; \pi^-) e^+ e^-$
13	$B^+ \rightarrow K^0_S \pi^+ \pi^0 \mu^+ \mu^-$
14	$B^0 ightarrow K^+ \ \pi^- \ \pi^0 \ \mu^+ \mu^-$
15	$B^0 ightarrow K^0_{\scriptscriptstyle S} \ \pi^+ \ \pi^- \ \mu^+\mu^-$
16	$B^+ \rightarrow K^+ \ \pi^+ \ \pi^- \ \mu^+ \mu^-$
17	$B^+ ightarrow K^0_s \ \pi^+ \ \pi^0 \ e^+ e^-$
18	$B^0 ightarrow K^+ \ \pi^- \ \pi^0 \ e^+ e^-$
19	$B^0 ightarrow K^0_s \ \pi^+ \ \pi^- \ e^+ e^-$
20	$B^+ \rightarrow K^+ \ \pi^+ \ \pi^- \ e^+ e^-$
21	$B^{0} \to K^{0}_{S} \pi^{+} \pi^{-} \pi^{0} \mu^{+} \mu^{-}$
22	$B^+ \rightarrow K^+ \ \pi^+ \ \pi^- \ \pi^0 \ \mu^+ \mu^-$
23	$B^+ \rightarrow K_s^0 \pi^+ \pi^- \pi^+ \mu^+ \mu^-$
24	$B^0 \to K^+ \pi^+ \pi^- \pi^- \mu^+ \mu^-$
25	$B^0 \to K^0_s \ \pi^+ \ \pi^- \ \pi^0 \ e^+ e^-$
26	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 e^+ e^-$
27	$B^+ \rightarrow K_s^0 \pi^+ \pi^- \pi^+ e^+ e^-$
28	$B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- e^+ e^-$

Inclusive measurements sometimes uses so-called **SEM** approaches: Sum over exclusive modes

Same approach: simulated as mix of **exclusive** & **inclusive** processes inclusive X_s system hadronized using Pythia / JETSET

TABLE VII: $B \to X_s e^+e^-$ branching fraction model-dependent extrapolation systematic uncertainties.

	Variation	q_0^2	q_{1}^{2}	q_{2}^{2}	q_{3}^{2}	q_{4}^{2}	q_{5}^{2}	$m_{X_s,3}$	$m_{X_s,4}$
actual changes	Jetset tunings	$+0.060 \\ -0.059$	$+0.011 \\ -0.013$	$+0.010 \\ -0.012$	$+0.011 \\ -0.014$	$+0.001 \\ -0.002$	$+0.031 \\ -0.036$	$+0.037 \\ -0.036$	$+0.075 \\ -0.077$
in tunings	$\pm 50\% N_{\pi^0} > 1$	0.249	0.047	0.038	0.025	0.002	0.130	0.030	0.051
"ad-hoc"	$\pm 50\%~K$ multiplicity	0.046	0.008	0.006	0.002	0.000	0.022	0.000	0.006
variations	$\pm 50\% \pi^+$ multiplicity	0.196	0.036	0.028	0.012	0.000	0.100	0.024	0.080
	$\pm 1\sigma \ B \to K^{(*)}\ell^+\ell^- \ BFs$	$+0.115 \\ -0.129$	$+0.024 \\ -0.026$	$^{+0.021}_{-0.023}$	$^{+0.018}_{-0.018}$	$^{+0.002}_{-0.002}$	$+0.067 \\ -0.073$	$+0.004 \\ -0.005$	$^{+0.000}_{-0.000}$
	Total	$+0.346 \\ -0.351$	$+0.065 \\ -0.066$	$+0.053 \\ -0.054$	$+0.035 \\ -0.036$	$+0.003 \\ -0.003$	$+0.181 \\ -0.184$	$+0.053 \\ -0.053$	$+0.121 \\ -0.123$

TABLE VIII: $B \to X_s \,\mu^+ \mu^-$ branching fraction model-dependent extrapolation systematic uncertainties.

Variation	q_0^2	q_{1}^{2}	q_{2}^{2}	q_{3}^{2}	q_4^2	q_5^2	$m_{X_s,3}$	$m_{X_s,4}$
Jetset tunings	$+0.035 \\ -0.041$	$+0.002 \\ -0.003$	$+0.005 \\ -0.006$	$+0.009 \\ -0.012$	$+0.001 \\ -0.002$	$+0.025 \\ -0.020$	$+0.015 \\ -0.014$	$+0.007 \\ -0.008$
$\pm 50\% N_{\pi^0} > 1$	0.154	0.011	0.020	0.021	0.002	0.047	0.012	0.005
$\pm 50\%~K$ multiplicity	0.029	0.002	0.003	0.002	0.000	0.008	0.000	0.001
$\pm 50\% \pi^+$ multiplicity	0.122	0.008	0.015	0.010	0.000	0.036	0.010	0.008
$\pm 1\sigma \ B \to K^{(*)}\ell^+\ell^-$ BFs	+0.027 -0.030	$+0.002 \\ -0.002$	$+0.004 \\ -0.005$	$+0.007 \\ -0.007$	$+0.001 \\ -0.001$	+0.015 -0.019	+0.001 -0.001	+0.000 -0.000
Total	+0.203 -0.205	+0.014	+0.026 -0.026	+0.026 -0.027	+0.003 -0.003	+0.066 -0.065	+0.021 -0.021	+0.012 -0.013
	0.200	0.011	0.020	0.021	0.000	0.000	0.021	0.010

Targets about 70% of all $B \to X_s \ell \ell$ decays

Reconstructed Mode Reconstructed As 1 $B^0 \to K_s^0 \mu^+ \mu^-$ 2 $B^+ \to K^+ \mu^+ \mu^-$ 3 $B^0 \to K_s^0 e^+ e^-$ 4 $B^+ \to K^+ e^+ e^-$ 5 $B^0 \to K^{*0} (K_s^0 \pi^0) \mu^+ \mu^-$ 6 $B^+ \to K^{*+} (K^+ \pi^0) \mu^+ \mu^-$ 7 $B^+ \to K^{*+} (K_s^0 \pi^+) \mu^+ \mu^-$ 8 $B^0 \to K^{*0} (K^+ \pi^-) \mu^+ \mu^-$ 9 $B^0 \to K^{*0} (K^+ \pi^-) e^+ e^-$ 10 $B^+ \to K^{*+} (K_s^0 \pi^+) e^+ e^-$ 11 $B^+ \to K_s^0 \pi^+ \pi^0 \mu^+ \mu^-$ 12 $B^0 \to K^{*0} (K^+ \pi^-) e^+ e^-$ 13 $B^+ \to K_s^0 \pi^+ \pi^- \pi^0 \mu^+ \mu^-$ 14 $B^0 \to K_s^0 \pi^+ \pi^- \pi^0 \mu^+ \mu^-$ 15 $B^0 \to K_s^0 \pi^+ \pi^- \pi^0 e^+ e^-$ 18 $B^0 \to K_s^0 \pi^+ \pi^- \pi^0 \mu^+ \mu^-$ 19 $B^0 \to K_s^0 \pi^+ \pi^- \pi^0 \mu^+ \mu^-$ 20 $B^+ \to K^+ \pi^+ \pi^- \pi^0 \theta^+ e^-$ 21 $B^0 \to K_s^0 \pi^+ \pi^- \pi^0 \theta^+ e^-$ 22 $B^+ \to K_s^0 \pi^+ \pi^- \pi^0 \theta^+ e^-$ 23 $B^+ \to K_s^0 \pi^+ \pi^- \pi^- \theta^- \mu^+ \mu^-$ 24 $B^0 \to K_s^0 \pi^+ \pi^- \pi^- \theta^- e^+ e^-$ 25		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Reconstructed Mode	Reconstructed As
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$B^0 \rightarrow K^0_{s} \ \mu^+ \mu^-$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$B^+ \rightarrow K^+ \ \mu^+ \mu^-$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$B^0 ightarrow K^0_s \; e^+ e^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$B^+ \rightarrow K^+ \ e^+ e^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$B^0 \to K^{*0} \; (K^0_s \; \pi^0) \mu^+ \mu^-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$B^+ \to K^{*+} \ (K^+ \ \pi^0) \mu^+ \mu^-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	$B^+ \rightarrow K^{*+} \ (K^0_s \ \pi^+) \mu^+ \mu^-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$B^0 ightarrow K^{*0} \ (K^+ \ \pi^-) \mu^+ \mu^-$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$B^0 o K^{*0} \; (K^0_s \; \pi^0) e^+ e^-$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	$B^+ \rightarrow K^{*+} \ (K^+ \ \pi^0) e^+ e^-$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11	$B^+ \! ightarrow K^{*+} \; (K^0_s \; \pi^+) e^+ e^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$B^0 ightarrow K^{st 0} \; (K^+ \; \pi^-) e^+ e^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	$B^+ \rightarrow K^0_s \ \pi^+ \ \pi^0 \ \mu^+ \mu^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$B^0 \rightarrow K^+ \pi^- \pi^0 \mu^+ \mu^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	$B^0 \rightarrow K^0_s \pi^+ \pi^- \mu^+ \mu^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	$B^+ \to K^+ \ \pi^+ \ \pi^- \ \mu^+ \mu^-$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	$B^+ \rightarrow K^0_s \ \pi^+ \ \pi^0 \ e^+ e^-$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	$B^0 \rightarrow K^+ \pi^- \pi^0 e^+ e^-$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	$B^0 ightarrow K^0_s \ \pi^+ \ \pi^- \ e^+ e^-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	$B^+ \rightarrow K^+ \ \pi^+ \ \pi^- \ e^+ e^-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	$B^0 \to K^0_s \ \pi^+ \ \pi^- \ \pi^0 \ \mu^+ \mu^-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 \mu^+ \mu^-$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	$B^+ \to K^0_s \pi^+ \pi^- \pi^+ \mu^+ \mu^-$
25 26 26 27 28 $B^{0} \to K_{s}^{0} \pi^{+} \pi^{-} \pi^{0} e^{+}e^{-}$ $B^{+} \to K^{+} \pi^{+} \pi^{-} \pi^{0} e^{+}e^{-}$ $B^{+} \to K_{s}^{0} \pi^{+} \pi^{-} \pi^{+} e^{+}e^{-}$ $B^{0} \to K^{+} \pi^{+} \pi^{-} \pi^{-} e^{+}e^{-}$	24	$B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \mu^+ \mu^-$
26 27 28 $B^+ \to K^+ \pi^+ \pi^- \pi^0 e^+ e^-$ $B^+ \to K_s^0 \pi^+ \pi^- \pi^+ e^+ e^-$ $B^0 \to K^+ \pi^+ \pi^- \pi^- e^+ e^-$	25	$B^{0} \to K^{0}_{s} \pi^{+} \pi^{-} \pi^{0} e^{+}e^{-}$
27 28 $B^+ \to K_s^0 \pi^+ \pi^- \pi^+ e^+ e^-$ 28 $B^0 \to K^+ \pi^+ \pi^- \pi^- e^+ e^-$	26	$B^+ \rightarrow K^+ \pi^+ \pi^- \pi^0 e^+ e^-$
28 $B^0 \to K^+ \pi^+ \pi^- \pi^- e^+ e^-$	27	$B^+ \to K_s^0 \pi^+ \pi^- \pi^+ e^+ e^-$
	28	$B^0 \to K^+ \pi^+ \pi^- \pi^- e^+ e^-$

Non-Perturbative QCD at e+e- B-Factories

1. Simulation of Signal Processes

3. Calculation of Matrix Elements / Decay rates to determine fundamental parameters

D Martschei et al 2012 J. Phys.: Conf. Ser. 368 012028

Non-Perturbative QCD at e+e- B-Factories

1. Simulation of Signal Processes

3. Calculation of Matrix Elements / Decay rates to determine fundamental parameters

Future and past data to improve simulations

Essentially most tuning we did in the past, built upon internal data with the obvious drawbacks: * Not reproducible, not available for outsiders

(My personal opinion): I think we should make sure to change this to preserve our physics results

Large available Belle data set, that can be processed in the Belle II software framework:

B2BII https://arxiv.org/pdf/1810.00019.pdf

Data conversion from Belle to Belle II

Treasure trove for tuning; available for all Belle II members for technical work

But also many interesting measurements available from **BaBar** and **Belle** in the public domain already. E.g. light hadron multiplicity as a function of x_p .

Typically these measurements need an excellent understanding of ones detector; not a low-hanging fruit :-)

Future and past data to improve simulations

Essentially most tuning we did in the past, built upon internal data with the obvious drawbacks: * Not reproducible, not available for outsiders

(My personal opinion): I think we should make sure to change this to preserve our physics results

Another example: Belle data

https://pos.sissa.it/234/456/pdf

Some of these results are in HEPData, but more work likely needed.

Currently main focus at Belle II lies in understanding the detector and beam backgrounds; but eventually we will need to also focus on tuning aspects to achieve the precision we aim for.

EXAMPLE 3 Cross sections for the reactions $e^+e^- \rightarrow K^0_S K^0_L$, $K^0_S K^0_L \pi^+ \pi^-$, $K^0_S K^0_S \pi^+ \pi^-$, The BaBar collaboration Lees, J.P.; Poireau, V.; Tisserand, V.; *et al.* **Phys.Rev. D89 (2014) 092002, 2014**.

More Information

Continuum Simulation at Belle II

- ➡ large effect of ISR
- three options to generate the FSR
- maximum 10-20% effect of FSR on radiated photon spectrum at low momenta
 - source of systematic uncertainty
- tiny effect of ISR/FSR interference

Some more inclusive 1.2

U

1

1.4

Michael C J.2 Michael C MC/D M 0.8

Beam backgrounds

Use simulated but also recorded beam backgrounds (from random triggered events) and overlay them with simulated events.