	tuning & data	

Hadronization Models and their Uncertainties

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

Snowmass Virtual, 3.8.2020

< □ > < □ > < □ > < □ > <

	tuning & data	

- why should we care?
- hadronization models
- tuning & data
- summary

▲ロト▲母ト▲目ト▲目ト 目 のへの

why should we care?

F. Krauss Hadronization Models & Uncertainties ・ロト・日本・日本・日本・日本・日本

IPPP

introduction	tuning & data	
00		

motivation: precision era at the LHC

- entering percent precision era at LHC:
 - huge phase-space coverage of large variety of observables
 - NNLO_(QCD), NLO_(QCD)⊗NLO_(EW)(approx) & NLO_(EW) (exact) becoming the new baseline precision for many observables
 - rough estimate of uncertainities: $(lpha_S/\pi)^2\simeq 1\%$
- but how about sub-leading twist?
 - reminder: use collinear factorization, assume m_p/Q small
 - typical precision scale $Q\simeq M_Z$: $m_p/m_Z\simeq 1\%$
 - typical manifestations: MPI, hadronization, ...

soft physics effects may dominate theory uncertainties in (some) observables relevant to precision era at LHC

hadronization models: a bird's eye view

	models	tuning & data	
00	0000	000000	00

underlying principles

- confinement through QCD linear potential:
 - known from lattice and fits to quarkonia masses
- local parton-hadron duality paradigm:
 - flow of hadronic quantum numbers (observable) \simeq flow of partonic quantum numbers (calculable)
- space-time picture of strong interactions:
 - parton formation time vs. hadronization time
- common denominator: large N_c limit

i.e. for each color there is eactly one traceable anti-colour introduce diquarks $qq~(+q \rightarrow$ baryons) as colour anti-triplets

models	tuning & data	
0000		

string fragmentation

- driver: linear QCD potential (flux-tube)
- produce colour singlet objects (strings): $\bar{q} g g \cdots g g q$
- $\bullet\,$ iteratively split strings from their end: string $\rightarrow\,$ string $+\,$ hadron
 - uniform kinematics $k_{\perp} \propto \text{Gaussian}: \mathcal{P}(k_{\perp}) \propto \exp(-\pi k_{\perp}^2/\sigma^2)$ $k_{\parallel} \propto \text{string fragmentation function } f(z) \propto z^{-1}(1-z)^a \exp(-bm_{\perp}^2/z)$

(can use other forms of f(z) for heavy flavours)

イロト イヨト イヨト イヨト

- select quark (diquark) according to "popping" probability
- select hadron with wave functions and multiplet weights
- first wave of (unstable) hadrons will decay further
- implemented in PYTHIA, i.m.o. the best hadronization model

models	tuning & data	
0000		

cluster fragmentation

- driver: local parton-hadron duality
- ullet forcibly decay gluons $g \to q \bar q$ and form neutral clusters
- iteratively decay clusters into hadrons or clusters
 - kinematics may depend on decay mode (SHERPA) $k_{\perp} \propto$ of new quark pair according Gaussian $k_{\parallel} \propto$ fragmentation function f(z) on "either" side

(parametrization depends on light/heavy quark and mass)

(I) < (I)

- select quark (diquark) according to "popping" probability
- select hadron with wave functions and multiplet weights
- first wave of (unstable) hadrons will decay further
- implemented in two different versions in HERWIG and SHERPA

tuning & data

▲□▶▲圖▶▲圖▶▲圖▶ = のQの

F. Krauss Hadronization Models & Uncertainties IPPP

tuning framework

- (semi-)automated tuning with **PROFESSOR**
- based on analyses available in RIVET
- in principle multi-step process:
 - dynamics of string/cluster break-up
 - "popping" probabilities/pop-corn
 - multiplet weights (like vector vs. pseudoscalars)
- user selects relevant data/bins
- possible extraction of uncertainties from "eigen"-tunes

・ロト ・同ト ・ヨト ・ヨ

models	tuning & data 00●000	

practical realization

• hadronization tuning entirely dominated by LEP I

(and to a very little amount, SLD)

イロト イヨト イヨト イヨト

- typical observables:
 - event shapes → dynamics
 (trust, major, minor, ...)
 (differential) jet multiplicities → dynamics
 (differential jet multiplicities → dynamics, popping
 (xp for charged/hadron species, dependent on primary quarks...)
 fragmentation functions → dynamics
 (especially *B* fragmentation (from SLD))
 (PDG) hadron multiplicities → popping & multiplets
 (especially *K*, p, ...; possibly also ratios w.r.t. π[±])

	tuning & data	
	000000	

practical limitations

- only one $E_{\rm cms}$ in e^+e^- :
 - \rightarrow no significant handle on energy extrapolation

(only very few measurements from, e.g., JADE, TASSO available in RIVET, with limited reach and statistics)

 \rightarrow data from BELLE 2 would help a lot!!!

- LEP dominated by quark jets:
 - \longrightarrow questionable handle on details of gluon fragmentation

(examples: enhanced diquark-popping? (leading) baryons? realisation of LPHD in gluons?)

 \rightarrow hadron "chemistry" of jets at TEVATRON/LHC?

(maybe use low-lumi runs and known q/g ratio in inclusive jets, tops, W/Z + jet?)

• LEP has no initial hadrons:

 \longrightarrow no handle on beam fragmentation

(also: impact of energetic source of colour on energy/particle flows)

< □ > < □ > < □ > < □ > < □ >

 \rightarrow use data from HERA/LHCf for tune

(but: existing analyses need to be put into RIVET- and used by "tuners")

models	tuning & data ΩΩΩΩΩ	

one more limitation

- impact of HI environment a hard problem
 - notable absence of models exception: rope model in DIPSY (see T.S. talk yesterday)
 - tricky interplay with a lot of other physics effects
 - (not sure how to define a strategy for systematic extraction)
 - data situation is critical

(it seems there is not a big repository like HEPDATA/RIVET for collaborations beyond ALICE)

・ロト ・ 同ト ・ ヨト ・ ヨト

summary

F. Krauss Hadronization Models & Uncertainties ▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

IPPP

	tuning & data	introduction
		00

summary

- hadronization is (still) an unsolved problem (no surprise)
- there is a good chance that it will become a limiting factor for the analysis and interpretation of precise data and their uncertainties
- while I have focused on hadronization, this is certainly also true for MPI, interplay with diffraction, colour reconnections . . .

・ロト ・同ト ・ヨト ・ヨ