IROC Garfield++ simulations

Alexander Deisting

 13^{th} July, 2020

Introduction

- Update on the simulation shown in the MPD meeting, week 13 (23.03.2020). See the slides in the backup.
- All the code for the following plots can be found here: https://gitlab.cern.ch/ adeistin/garfield-dune-hpgtpc-code/-/blob/master/README.md - in case someone wants to play. The *readme* should help somewhat to get started. Contains:
 - ALICE ROC
 - Mock up RHUL HPTPC with three anodes
 - Pull and play with *cmake* (tested so far on Mac and the RHUL batch system needs Garfield++)
- ▶ Today we show Ar-CO₂ (90-10) and P10 (Ar-CH₄ (90-10)) gain and signal simulation

Simulation set-up

- ► IROC geometry, three wire planes:
 - Anode wires, $\emptyset = 20 \,\mu\text{m}$, pitch 2.5 mm, $V_{\text{anode}} = 1460 \,\text{V}$
 - Cathode wires, $\emptyset_{cathode} = 75 \,\mu m$, pitch 2.5 mm, $V_{cathode} = 0 \,V$

• Gating grid wires, $\emptyset_{GG} = 75 \,\mu\text{m}$, pitch 1.25 mm, $V_{GG} = -70 \,\text{V}$

- ▶ 400 V cm⁻¹ drift field
- The choice of constant voltages and changing pressure reflects the current work in the lab: *i.e.* pick a voltage setting ALICE used and see what one sees at high pressure. Last week's interesting talk showed anode voltage scans for constant pressure.
- Ar-CO₂ (90-10) and P10 at 750 torr and 1500 torr, 2250 torr, 3000 torr and 3750 torr all at room temperature with the Penning effect not included
- ▶ Used 100 clusters with 25 primary electrons each. Each cluster is located 1.1 cm above the GG wire plane and the cluster position is smeared with a Gaußian: In wire direction with $\sigma = 0.5$ cm and $\sigma = 0.2$ cm in the other two.
- > The electron positions in a cluster are smeared as well with a Gaußian $\sigma = 0.05$ cm around the cluster centre.

Gas gain analysis, 1/3

- Gas amplification simulated using the AvalancheMicroscopic class
- Histogramise the number of electrons produced for each primary electron
- Fit a Polya (see below)to parametrise the gain
- On the right is the example for 750 torr, Ar-CO₂

$$\theta = \left(\langle gain \rangle^2 - \sigma_{gain} \right) / \sigma_{gain}^2 \tag{1}$$

$$P(G) = \frac{p_0}{\langle gain \rangle} \cdot \frac{(\theta - 1)^{(\theta - 1)}}{\Gamma(\theta - 1)} \cdot \left(\frac{G}{\langle gain \rangle} \right)^{\theta} \cdot \exp\left(- (\theta - 1) \cdot \frac{G}{\langle gain \rangle} \right) \tag{2}$$

MPD meeting, 13.07.2020

4

Gas gain analysis, 2/3

Ar-CO₂

Ar-CH₄

Gas gain analysis, 3/3

6

Gas analysis, comments

- Gains likely underestimated, slightly for Ar-CO₂, especially for the Ar-CH₄ (no Penning effect taken into account)
- Vanishing gain at higher pressures when the ALICE anode voltage is maintained
 - A large increase may not be feasible in order to ensure a safe operation of the chambers
 - Examining mixtures which provide a higher gain at lower voltage is a way out of this
- Will be interesting to compare to Brandon's results (last week's talk) since he used a different method in garfield++
- Having the parametrisation of the Polya at a gas and voltage setting ultimately allows to not simulate avalanches again (safes time), example on the next slide

Signal simulations

- Based on the gain simulation also a signal simulation can be run. It uses the same detector geometry and HV / gas-configuration file and runs on the output of the gain simulation
- I.e the initial electron positions are used to drift electrons / ions from there through the detector geometry
- Garfield++ records the signals. These are written out and can then be further processed. For example I convolve the signal with the same pre-amplifier response as we have seen last week, but external to garfield++
- PASA pre-amplifier response function:

$$R_{\text{PASA}}(t) = 12.7 \,\text{mV}\,\text{fC}^{-1} \cdot \exp(4) \left(\frac{t}{160\,\text{ns}}\right)^4 \exp\left(-\frac{4t}{160\,\text{ns}}\right) \tag{3}$$

One main question is what best to include in the final signals. I show on the next slides signals based only on the induced ion signal.

(A. Deisting)

response function

Signal simulations, comments

- Signal shape matches the ALICE measured signals, the scaling may be well off
- I have been using a default ion mobility file for CO₂ ions in CO₂.
- One for CO₂ ions in Ar would be needed for the Ar-CO₂ measurements and probably CH_{4?} in Ar for P10.
- There is thus a caveat, since the signal height here is driven by gas gain and ion mobility.
- Nevertheless: I simulated 100 waveforms for each of the voltage and gas settings

Y. Kalkan et al 2015 JINST 10 P07004

Signal analysis, Ar-CO₂

ion signal with PASA response

ion signal

Signal analysis, Ar-CH₄

ion signal with PASA response

ion signal

Signal analysis

- The plots on the previous page are pulse height spectra, where the baseline and the largest value for each amplitude is calculated (the baseline is zero)
- Each waveform corresponds to 25 amplified primary electrons. *I.e* multiply the spectra by \sim 100 to get an idea for ⁵⁵Fe photon.
- The resulting amplitude spectra follow the expectation based on the Polya functions

Signal analysis

- The plots on the previous page are pulse height spectra, where the baseline and the largest value for each amplitude is calculated (the baseline is zero)
- Each waveform corresponds to 25 amplified primary electrons. *I.e* multiply the spectra by \sim 100 to get an idea for ⁵⁵Fe photon.
- The resulting amplitude spectra follow the expectation based on the Polya functions

On the right the mean value of these amplitude distribution vs pressure and $\langle gain \rangle$ from the Polya fits to the gain distributions is shown

Summary

- Simulating the gas gain shows that it can be well parametrised by a Polya
- Amplitude spectra seem to follow the trend given by the Polyas as well
- \Rightarrow Increasing the statistics on both (especially on the latter) will allow to come up with a set of look-up functions for various gas and voltage settings, eliminating the need for extra run-time intensive garfield++ simulations in larger productions
- Unfortunately I did not yet run some configurations of last week's talk, but comparing both results will be a nice cross check, since we do not use the exact same garfield++ procedures
- The ultimate goal would be to compare to measurements in the lab except for the preamp response functions we should have most things in hand to do this

Backup

(A. Deisting)

(A. Deisting)

Amplitude spectra, ion signal, $Ar-CO_2$

MPD meeting, 13.07.2020

(A. Deisting)

Amplitude spectra, ion signal $\times R_{PASA}$, Ar-CO₂

MPD meeting, 13.07.2020

(A. Deisting)

Amplitude spectra, ion and electron signal, Ar-CO₂

(A. Deisting)

Amplitude spectra, ion and electron signal $\times R_{PASA}$, Ar-CO₂

MPD meeting, 13.07.2020

(A. Deisting)

Waveform comparison, ion signal, Ar-CO₂

(A. Deisting)

Waveform comparison, ion signal $\times R_{PASA}$, Ar-CO₂

(A. Deisting)

Waveform comparison, ion and electron signal, Ar-CO₂

(A. Deisting)

Waveform comparison, ion and electron signal $\times R_{PASA}$, Ar-CO₂

(A. Deisting)

Slides, 23.03.2020

Garfield++ simulation of an ALICE MWPC

- To better understand the signals seen in the IROC (and later by the OROC) some simulations would be nice
- ► For this reason I am currently having a look into Garfield++ simulation
- There is an example for an ALICE MWPC (http://garfieldpp.web.cern.ch/garfieldpp/examples/alicetpc/) – on this one I based my code
- > The problem with this example is that it does not have gas amplification in it
- The code lives on the CERN gitlab for now
- > These slides are a short status update on these everything is very preliminary

Since garfield can be a bit slow and memory usage intensive I split the simulation into two parts:

- ▶ a) Creating the avalanches from the initial electrons
- b) Drifting ions/electrons and calculate the signal
- In step b) the initial positions of the electrons from a) are used as the initial positions for the ion and electron drift
- Currently only 2 primary electrons are drifted in a purely ALICE TPC setting

Electric field map

Ion drift

Electron initial positions close to a wire

Electron final positions

Summary

Time in ns on the horizontal axis, induced charge in

arbitrary unit on the vertical

So far all this looks reasonable

- I have to think a bit more about how to go from the raw induced signal to the signal (as shown on the left). This involves checking the signal transfer function provided does what I would like it to do
- Still on the list:
 - Implement this for the correct gas
 - ▶ ⁵⁵Fe as source of the signal
 - Large production of signals to run through a signal analysis