

‡ Fermilab

Clusters and Lenses: Analyzing Ten Gravitational Lensing Systems Discovered in the Sloan Digital Sky Survey

Matthew P. Wiesner Northern Illinois University Department of Physics

Huan Lin (Fermilab), Michael Fortner (NIU), Elizabeth Buckley-Geer, James Annis, Sahar Allam, Jeffrey Kubo, H. Thomas Diehl, Douglas Tucker, Donna Kubik (Fermilab)

Fermilab New Perspectives Conference, 2011

Outline

Introduction to the astrophysics
 The data and how it was taken
 Properties of the galaxy clusters
 Properties of the gravitational lenses
 Initial cosmological conclusions

1) The Astrophysics

What is a galaxy cluster?

- Collection of galaxies
- Dark matter

Abell 2255 (SDSS.org)

(Penn State University)

What is a gravitational lens?

- System where light bends due to presence of mass
- Effect of General Relativity (light follows curvature)

(NASA/CXC/M.Weiss)

2) The Data

SDSS J1537+6556

SDSS J0900+2234

The ten systems

Color images from g,r,i filters
Found in Sloan Digital Sky Survey
Follow-up data taken at WIYN telescope
Each includes a blue arc and a galaxy cluster

SDSS J1318+3942

SDSS J1511+4713

SDSS J1439+3250

SDSS J0901+1814

SDSS J1209+2640

SDSS J1343+4155

SDSS J1209+2640 The Richest Cluster

SDSS J1038+4849 The Happiest Cluster

The telescopes

The Wisconsin-Yale-Indiana-NOAO (WIYN) Telescope

NOAO/AURA/NSF

The Sloan Digital Sky Survey (SDSS) Telescope

SDSS.org

3) Properties of the Galaxy Clusters

ethod Galaxy s

MaxBCG Method for Finding Galaxy Clusters (Koester et al. 2007)

Look for:

(1)Groups of galaxies where density increases near center
(2)Constant color
(3)Central Brightest
Cluster Galaxy (BCG) How do we find galaxy clusters?

Defining a cluster galaxy

Counting Galaxies – Quantifying Richness •N_{gals}, number within 1 Mpc

Used Fortran program to find objects that were:

A.Galaxies, not stars
B.Within 1 Mpc of BCG
C.Within 2σ of particular
color
D.At least as bright as

0.4L* (min brightness criterion)

A. Galaxy-Star Separation

Find stellar locus by plotting magnitude difference vs. variable aperture magnitude

Color-Magnitude Diagram for SDSS J1537+6556

C. Selecting Cluster Members

Results for N_{gals}

Object	Ngals
SDSS J1511+4713	26
SDSS J0901+1814	6
SDSS J1439+3250	50
SDSS J0900+2234	13
SDSS J0957+0509	21
SDSS J1537+6556	15
SDSS J1038+4849	15
SDSS J1318+3942	21
SDSS J1209+2640	59
SDSS J1343+4155	23

Finding N₂₀₀

Radius of sphere within which ρ=200ρ_c (Hansen et al. 2005)

 $r_{200} = 0.156(N_{gal}^{0.6})h^{-1}Mpc$

 $\rho_c(z) = \frac{3H(z)^2}{8\pi G}$

Object	r 200 (h-1Мрс)	N ₂₀₀
SDSS J1511+4713	1.10	30
SDSS J0901+1814	0.457	3
SDSS J1439+3250	1.63	71
SDSS J0900+2234	0.727	12
SDSS J0957+0509	0.969	20
SDSS J1537+6556	0.792	14
SDSS J1038+4849	0.792	12
SDSS J1318+3942	0.969	18
SDSS J1209+2640	1.80	108
SDSS J1343+4155	1.02	22

Finding M₂₀₀

M₂₀₀ (Johnston et. al. 2007). N₂₀₀ from MaxBCG catalog, mass found from weak lensing.

$$M_{200}(N_{200}) = M_{200|20} \left(\frac{N_{200}}{20}\right)^{\alpha_N}$$

Object	M ₂₀₀ (10 ¹⁴ h ^{−1} M⊙))
SDSS J1511+4713	1.48 ± 0.665
SDSS J0901+1814	0.0776 ± 0.0349
SDSS J1439+3250	4.45 ± 2.00
SDSS J0900+2234	0.458 ± 0.206
SDSS J0957+0509	0.880 ± 0.396
SDSS J1537+6556	0.557 ± 0.251
SDSS J1038+4849	0.458 ± 0.206
SDSS J1318+3942	0.769 ± 0.346
SDSS J1209+2640	7.62 ± 3.43
SDSS J1343+4155	0.994 ± 0.447

Finding Velocity Dispersion

$$\langle \ln \sigma_{\nu} \rangle = A + B \ln \left(\frac{N_{200}}{25} \right)$$

Object	σv (velocity dispersion) (km/s)
SDSS J1511+4713	652 ±183
SDSS J0901+1814	461 ±144
SDSS J1439+3250	832 ±213
SDSS J0900+2234	434 ±138
SDSS J0957+0509	291 ±102
SDSS J1537+6556	636 ±180
SDSS J1038+4849	540 ±161
SDSS J1318+3942	159 ±63
SDSS J1209+2640	720 ±195
SDSS J1343+4155	612 ±176

Velocity dispersion (Becker et. al. 2008)

•Found σ_v from spectroscopy in N_{200} bins.

4) Properties of the Gravitational Lenses

Einstein Radius •Describes size of gravitational lens. For a perfect circle (Einstein ring) this is the radius of the ring.

Modeling the lens as a sphere

Object	Einstein Radius	
	(arcsec)	
SDSS J1511+4713	5.4 ± 0.5	
SDSS J0901+1814	6.9 ± 0.7	
SDSS J1439+3250	7.4 ± 0.7	
SDSS J0900+2234	8.0 ± 0.8	
SDSS J0957+0509	8.2 ± 0.8	
SDSS J1537+6556	8.5 ± 0.9	
SDSS J1038+4849	8.6 ± 0.9	
SDSS J1318+3942	9.1 ± 0.9	
SDSS J1209+2640	11 ± 1.1	
SDSS J1343+4155	13 ± 1.3	

SDSS J0900+2234

Properties of the lens

Einstein radius

$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{ds}}{D_s D_d}}$$

Lens Mass

$$M = \theta_E^2 \left(\frac{c^2}{4G} \frac{D_d D_s}{D_{ds}} \right)$$

Narayan & Bartelmann (1997)

		X Observer [⊥]	Ŧ	
Object		Mass within		
		Einstein Radius		
		(10¹²h⁻¹M _☉)		
SDSS J1511+4713	3	6.3 ± 1.2		
SDSS J0901+1814	4	5.5 ± 1.1		
SDSS J1439+3250	0	$7.4 \pm 1.4 - 10.0 \pm 1.9$		
SDSS J0900+2234	4	11 ± 2.2		
SDSS J0957+0509	9	12 ± 2.3		
SDSS J1537+6556	6	8.7 ± 1.8		
SDSS J1038+4849	9	15 ± 3.1		
SDSS J1318+3942	2	12 ± 2.4		
SDSS J1209+2640	0	36 ± 7.2		
SDSS J1343+415	5	24 ± 4.8		

Velocity Dispersion

 $\sigma_{v} = \sqrt{\frac{\theta_{E}c^{2}}{4\pi} \frac{D_{s}}{D_{ds}}}$

Narayan & Bartelmann (1997			
Object	Einstein Radius	Mass	Velocity
	(arcsec)	enclosed	Dispersion
		within	(km/s)
		Einstein	
		radius	
		(10 ¹² h⁻¹M _☉)	
SDSS J1511+4713	5.4 ± 0.4	6.3 ± 1.0	631 ± 29.2
SDSS J0901+1814	6.9 ± 0.1	5.5 ± 0.2	564± 26.6
SDSS J1439+3250	7.4 ± 0.5	7.4 ± 1.0 -	596 ± 28.2 -
		10.0 ± 1.3	708 ± 33.5
SDSS J0900+2234	8.0 ± 0.0	11 ± 0.1	648 ± 32.4
SDSS J0957+0509	8.2 ± 0.1	12 ± 0.4	680 ± 33.2
SDSS J1537+6556	8.5 ± 0.5	8.7 ± 1.0	715 ± 37.9
SDSS J1038+4849	8.6 ± 0.4	15 ± 1.3	780 ± 40.8
SDSS J1318+3942	9.1 ± 0.5	12 ± 1.2	336 ± 16.6
SDSS J1209+2640	11 ± 0.5	36 ± 3.4	691 ± 34.6
SDSS J1343+4155	13 ± 0.6	24 ± 2.1	371 ± 18.6

5) Initial Cosmological Conclusions

ΛCDM

- Standard model of cosmology
 - Cosmological principle
 - Expansion of universe with Big Bang, cosmological redshift
 - Flat spatial geometry
 - Cosmological constant
 - Dark matter cold, non-baryonic, dissipationless (cannot cool by radiating), collisionless

Disagreement with ACDM?

A

Gralla et. al. 2010

•Higher than expected concentrations: Cluster cores collapsing faster than we thought? Why? (Broadhurst and Barkana 2008)

A Disagreement with ΛCDM?

Conclusion

- We studied ten galaxy clusters and gravitational lenses
- Found richness and mass of clusters
- Found size and mass of lenses
- Found that current predictions for Einstein radius as a function of cluster mass do not match data

Acknowledgements

- Fermilab Graduate Student Association
- Dr. Huan Lin
- Dr. Michael Fortner
- The Fermilab Experimental Astrophysics
 Group
- Dr. Laurence Lurio and the NIU Department of Physics

Questions?

http://catalog.instructionalimages.com/einsteinquestion-pi-27.html