

Search for a heavy top t'→Wq in top events

David Cox University of California, Davis on behalf of the CDF Collaboration New Perspectives, 2011

CDF & the Tevatron

$p\bar{p}$ collisions at 1.96 TeV

Continual improvements in instantaneous luminosity means more data per year for **CDF** every year

CDF

CDF Detector

The CDF detector is a general purpose solenoidal detector which combines precision charged particle tracking with projective calorimetry and fine grained muon detection

What is a t' quark

A t' is a fourth generation top-like quark or similar object

 Predicted by a variety of theoretical models: Flavor democracy, GUT SO(1,13), Two Higgs doublet scenarios, Beautiful Mirrors, Little Higgs

Existing Limits

LEP measurements of the Z boson exclude a light fourth neutrino

New Perspectives 2011 - David Cox

Constraints from radiative corrections to electroweak parameters also exist (parameterized with S,T,U)

parameter set	$m_{t'}$	$m_{b'}$	m_H	ΔS_{tot}	ΔT_{tot}
(a)	310	260	115	0.15	0.19
(b)	320	260	200	0.19	0.20
(c)	330	260	300	0.21	0.22
(d)	400	350	115	0.15	0.19
(e)	400	340	200	0.19	0.20
(f)	400	325	300	0.21	0.25

 $m_{v_4} = 100 \text{ GeV/c}$ $m_{l_4} = 155 \text{ GeV/c}$

There are reasonable constructions of a fourth generation which are not excluded

Source: Phys. Rev. D76:075016, 2007 arXiv:0706.3718v1

5

Why look for it?

Several theoretical models predict it Presence of a fourth generation relaxes Higgs bounds Some models improve the fit to the electroweak observables with a fourth generation Why not?

Theory Overview

Flavor Democracy: Four generations of leptons with equal Yukawa couplings - t',b' required for anomaly cancellation [JHEP 0212 (2002) 036]

GUT SO(1,13): Four generations from symmetry breaking [Bled workshops in physics, Vol.7, No.2, DMFA-Zaloznistvo, Ljubljana, Dec. 2006]

Two Higgs Doublet: N=2 Supersymmetry requires 3 additional fermion generations [Phys. Rev. D64 (2001) 053004]

Little Higgs: Cancels quadratic divergences using additional particles (Not supersymmetric) [Phys. Rev. D 68, 097301 (2003)]

Beautiful Mirrors: Extra quarks improve agreement between measured asymmetry and predicted (Possible vector-like coupling) [Phys. Rev. D65:053002, 2002] New Perspectives 2011 - David Cox 7

The t' search at CDF

Assumptions

- t' → Wq (BR ≈ 100%) or
 t' → Wb (BR ≈ 100%)*
- t' is pair produced strongly
 - t' mass > top quark mass

8

*: Usually M_{t'} - M_{b'} < M_W New Perspectives 2011 - David Cox

Selection for $t' \rightarrow Wb (Wq)$

- Exactly one high-p_T ($p_T \ge 20$ (25) GeV) isolated electron or muon
- Large missing transverse energy ($E_T \ge 20 \text{ GeV}$)
- At least four energetic jets ($E_T \geq 20~{
 m GeV}$)
- For t' \rightarrow Wq we also require two jets with $E_T \ge 25$ GeV

For $t' \rightarrow Wb$ we require one of the jets to be tagged as coming from a b-jet with the secondary vertex tagging algorithm

New Perspectives 2011 - David Cox

-

Cuts for $t' \rightarrow Wq$ for QCD

To reduce QCD background we require

Transverse boson mass (M_{T,W}) > 20 GeV

- Missing E_T significance $> 0.5 \cdot M_{T,W} + 3.5$

Mismodeling Cuts $(t' \rightarrow Wq)$

For electron events with lead jet $E_T > 160$ GeV we require - $-\Delta \phi(\vec{E_T}, Lead Jet) > 0.6$ rad For electron events with lepton $p_T > 120$ GeV we require $-\Delta \phi(\vec{E_T}, Lepton) < 2.6$ rad For muons with lepton $p_T > 120$ GeV we require $\Delta \phi(E_T, Lepton) < 2.6 \text{ rad (tight)}$ 0.4 rad < $\Delta \phi(\vec{E_T}, Lepton)$ < 2.6 rad (loose)

Search Technique

To distinguish between backgrounds and signal we fit to the observed 3D distribution of reconstructed mass, total transverse energy ($H_T = \sum_{jets} E_T + E_{T,l} + \not\!\!\!E_T$) and jet category (number of jets and χ^2)

[The fit used is a binned likelihood fit

Systematic errors are treated as parameters in the fit and are allowed to float within their expected uncertainties

Mreco - Kinematic Fitter

Calculate a χ^2 based on the kinematic quantities Constrain W decay products to W mass and the top / anti-top mass to be equal

$$\begin{split} \chi^2 &= \sum_{i=\ell,4jets} \frac{(p_T^{i,fit} - p_T^{i,meas})^2}{\sigma_i^2} + \sum_{j=x,y} \frac{(p_j^{UE,fit} - p_j^{UE,meas})^2}{\sigma_j^2} + \frac{(m_{jj} - m_W)^2}{\Gamma_W^2} + \frac{(m_{jj} - m_W)^2}{\Gamma_W^2} + \frac{(m_{bl\nu} - m_t)^2}{\Gamma_t^2} \end{split}$$

UE = unclustered energy

Kinematic Fitter Output

Backgrounds

We model our backgrounds in three separate ways

- The backgrounds from $t\bar{t}$ production and electroweak processes are modeled via MC samples whose normalization is constrained to expected values
 - The backgrounds from W+jets is modeled with MC and it's normalization is allowed to float in the fit
- The QCD background is modeled from a sample of data collected using jet triggers in which some of the lepton id requirements were loosened

Search Results t'→Wb

Search Results t'→Wb

Distributions shown for the maximum likelihood

Search Results t'→Wb

Latest 95% CL exclusion limit t' mass > 358 GeV/c²

Search Results $t' \rightarrow Wq$

The W+jets & t' cross sections float in the fit. The top cross section is constrained to a normal distribution with mean at 7.23 pb

Search Results $t' \rightarrow Wq$

Distributions shown for the maximum likelihood

Search Results $t' \rightarrow Wq$

Latest 95% CL exclusion limit t' mass > 340 GeV/c²

Conclusions

Current t' 95% CL exclusion: 358 (Wb) or 340 (Wq) GeV/c²
 PRL coming soon
 More information at

http://www-cdf.fnal.gov/physics/new/top/2011/search_tprime/public_5.6.html

Backup

arameter set	$m_{t'}$	$m_{b'}$	m_H	ΔS_{tot}	ΔT_{tot}
(a)	310	260	115	0.15	0.19
(b)	320	260	200	0.19	0.20
(c)	330	260	300	0.21	0.22
(d)	400	350	115	0.15	0.19
(e)	400	340	200	0.19	0.20
(f)	400	325	300	0.21	0.25

Theory Overview

Flavor Democracy: Four generations of leptons with equal Yukawa couplings - t',b' required for anomaly cancellation [JHEP 0212 (2002) 036 - arXiv:hep-ph/0204217v2]

GUT SO(1,13): Four generations from symmetry breaking [Bled workshops in physics, Vol.7, No.2, DMFA-Zaloznistvo, Ljubljana, Dec. 2006 - arXiv:hep-ph/0612250v1]

Two Higgs Doublet: N=2 Supersymmetry requires 3 additional fermion generations [Phys. Rev. D64 (2001) 053004 - arXiv:hep-ph/0102144v2]

Little Higgs: Cancels quadratic divergences using additional particles (Not supersymmetric) [Phys. Rev. D 68, 097301 (2003)]

Beautiful Mirrors: Extra quarks improve agreement between measured asymmetry and predicted (Possible vector-like coupling) [Phys. Rev. D65:053002, 2002 -arXiv:hep-ph/ New Perspectives 2011 - David Cox 25