Precision mesurement of B_s lifetime in the channel $B_s \rightarrow \mu D_s X$

Jorge Martínez-Ortega on behalf of the DZero collaboration

Cinvestav, IPN, México

New Perspectives, 31 May 2011

Precision mesurement of B_s lifetime in the channel B_s $\rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 I /14

Overview

- Motivation
- Tevatron and DØ
- Method Details
- Selection and Reconstruction
- Likelihood function
- Signal Sample and K factor
- Preliminary Lifetime Fit
- Summary

Precision mesurement of B_s lifetime in the channel B_s $\rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 2 /14

Motivation

From Heavy Quark Expansion (Phys. Rev. D 70, 094031),

$$\tau_{\rm B_s}/\tau_{\rm B^0} = 1.00 \pm 0.01 \tag{I}$$

In addition, τ_{B_s} is an input used to compute the CKM Unitarity Triangle (arXiv:0906.0953v2) .

In the B^{\pm} and B^0 systems BaBar, Belle collaborations have reached a precision of around 1% or better

- ► $\tau_{B^{\pm}} = 1.635 \pm 0.011 \pm 0.011(10^{-12} \text{s})$, **PRD 71** 072003 and 079903, Belle Collaboration.
- ► $\tau_{B^0} = 1.504 \pm 0.013^{+0.018}_{-0.013} (10^{-12} \text{s})$, **PRD 73** 012004, BaBar Collaboration.

In the B_s system, DZero last measurement has 3.1% of statistical uncertainty **Phys. Rev. Lett. 97** 241801 (2006).

Tevatron and DØ

Tevatron Collider at Fermilab

- proton antiproton collisions at $\sqrt{s} = 1.96 \text{TeV}$
- ► 10+ fb⁻¹ of integrated luminosity delivered
- ► DØ has recorded 9.6 fb⁻¹

Precision mesurement of B_s lifetime in the channel $B_s \rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 4/14

General Procedure

The decays that contribute to the channel $B_s \rightarrow D_s \mu X$ are:

- ► $B_s \rightarrow D_s^- \mu^+ \nu_\mu$
- ► $B_s \rightarrow D_s^{*-} \mu^+ \nu_\mu$
- $\blacktriangleright B_{\rm s} \rightarrow D_{\rm s0}^{*-} \mu^+ \nu_{\mu}$
- $\blacktriangleright B_{\rm s} \rightarrow D_{\rm s1}^{*-} \mu^+ \nu_{\mu}$
- $\blacktriangleright B_{\rm s} \rightarrow D_{\rm s}^- \tau^+ (\mu^+ \bar{\nu}_\mu \nu_\tau) \nu_\tau$

The *B* decays that contribute to the background are:

Precision mesurement of B_s lifetime in the channel $B_s \rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 5/14

 B^0_{\circ}

 D_{\circ}^{-}

K Factor

As all these modes cannot be fully reconstructed a correction on the proper decay length has to be introduced.

$$L_{xy} = c\tau \frac{p_T}{m}$$
(2)

$$c\tau = K \times L_{xy} \frac{m(B_s^0)}{p_T(D_s^- \mu^+)}$$
(3)

$$K = \frac{p_T(D_s^- \mu^+)}{p_T(B_s^0)}$$
(4)

We use Monte Carlo events to obtain the *K* factor distribution for each channel in our signal and *B* mesons background.

Precision mesurement of B_s lifetime in the channel B_s $\rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 6/14

Selection and Reconstruction

- μ^{\pm} with $p_T > 1.5 \text{ GeV/c}$ and $p_{tot} > 3 \text{ GeV/c}$
- ► K^+K^- with $p_T > 0.7 \text{ GeV/c}$ each, invariant mass $\in (1.08, 1.32) \text{ GeV/c}^2$
- π^{\mp} with $p_T > 0.7 \text{ GeV/c}$, $\phi \pi$ invariant mass $\in (1.6, 2.3) \text{ GeV/c}^2$

• $D_{\rm s}^{\pm}\mu^{\mp}$ invariant mass $\in (2.5, 5, 5)~{\rm GeV/c^2}$

Precision mesurement of B_s lifetime in the channel $B_s \rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 7/14

Likelihood

Our Likelihood is given by

$$\mathcal{L} = \mathcal{C}_{\text{signal}} \prod_{i \in SS} [f_{\text{signal}} \mathcal{F}_{\text{signal}}^{i} + (1 - f_{\text{signal}}) \mathcal{F}_{bkg}^{i}] \prod_{j \in BS} \mathcal{F}_{bkg}^{j}, \quad (5)$$

- ► SS: Signal sample, $M(D_s) 2\sigma < M(\phi\pi) < M(D_s) + 2\sigma$.
- ▶ BS: Background sample, sidebands and wrong sign combination, $\mu^{\pm}\pi^{\pm}$. Helps to model the combinatorial background.
- ► f_{signal}: signal fraction, obtained from a fit on the D_s mass distribution.
- C_{signal} Gaussian constraint on the signal fraction.

Signal Likelihood

The probability for the signal is given by:

$$\mathcal{F}_{signal}^{i} = f_{\bar{c}c}F_{\bar{c}c}^{i} +$$

$$(1 - f_{\bar{c}c}) \quad \left[f_{B_{s} \rightarrow D_{s}D}\mathcal{E}_{B_{s} \rightarrow D_{s}D}^{i} + f_{B_{s} \rightarrow D_{s}^{*}D_{s}^{*}}\mathcal{E}_{B_{s} \rightarrow D_{s}^{*}D_{s}^{*}}^{i} + f_{B_{0} \rightarrow D_{s}D}\mathcal{E}_{B_{0} \rightarrow D_{s}D}^{i} + f_{B^{+} \rightarrow D_{s}D}\mathcal{E}_{B^{+} \rightarrow D_{s}D}^{j} + (1 - f_{B_{s} \rightarrow D_{s}D} - f_{B_{s} \rightarrow D_{s}^{*}D_{s}^{*}} - f_{B_{0} \rightarrow D_{s}D} - f_{B^{+} \rightarrow D_{s}D})\mathcal{E}_{B_{s} \rightarrow D_{s}\mu}^{i}X\right],$$

$$(6)$$

• f_{decay} : fraction of events for each decay in the D_s peak.

$$\mathcal{E}_{decay}^{j}(\lambda_{j},\sigma(\lambda_{j}),\mathbf{s}) = \int d\mathcal{K}\mathcal{H}_{decay}(\mathcal{K}) \left[\frac{\mathcal{K}}{c\tau(\mathcal{B}_{decay})} e^{-\mathcal{K}\lambda_{j}/c\tau(\mathcal{B}_{decay})} \otimes \mathcal{R}(\lambda_{j},\sigma(\lambda_{j}),\mathbf{s})\right]$$
(7)

• $\mathcal{R}(\lambda_j, \sigma(\lambda_j), s)$: resolution

Precision mesurement of B_s lifetime in the channel $B_s \rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 9/14

Signal Sample and K factors

Lifetime Fit (Runlla)

The expected statistical uncertainty with the complete sample is around $5 \ \mu m$ with a similar systematic uncertainty.

Precision mesurement of B_s lifetime in the channel B_s $\rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 11/14

Summary

- The plan is to use 8.9 fb^{-1}
- All MC generated
- K factors computed
- Fractions computed
- To be ready in a few weeks, for the summer conferences

Precision mesurement of B_s lifetime in the channel B_s $\rightarrow \mu$ D_sX J. Martínez-Ortega New Perspectives, 31 May 2011 12 /14

Thank you for attending

Precision mesurement of B_s lifetime in the channel $B_s \rightarrow \mu D_s X$ J. Martínez-Ortega New Perspectives, 31 May 2011 13 /14

Back Up

Contribution	ontribution Branchig ratio		Contribution		R	.M.S
${\cal B}^0_{ m s} ightarrow {\cal D}^{ m s} \mu^+ ar{ u_\mu}$	$2.10 \pm$	- 0.64% 24.08	$8\pm7.34\%$	0.882	3 0.	.1109
$B^0_{ m s} ightarrow D^{st -}_{ m s} \mu^+ ar{ u_{\mu}}$	$5.60 \pm$	1.70% 64.22	$2 \pm 19.50\%$	% 0.859	0 0	.1021
$B^0_{ m s} ightarrow {\sf D}^{*-}_{ m s0}\mu^+ ar{ u_\mu}$	$0.20 \pm$	0.06% 2.29	$\pm 0.69\%$	0.825	4 0.	.0986
$B^0_{ m s} ightarrow D^{*-}_{ m s1}\mu^+ ar{ u_{\mu}}$	$0.37 \pm$	0.11% 3.36	$\pm 1.26\%$	0.814	7 0.	.0900
$B_{\rm s}^0 ightarrow D_{\rm s}^{(*)-} au^+ i$	$\bar{\nu}_{\tau} = 0.51 \pm$	0.15% 5.85	$\pm 1.72\%$	0.770	3 0.	.0948
All	8.72%		100%		28 0	.1053
Contributi	on Bra	anching Fraction	$f_{D_s}D$	$\langle K \rangle$	RMS (H	<)
$B_d^0 ightarrow D_s^- D_s^-$	$(*)^{(*)}X = 10$	$.5\pm2.6\%$	3.7%	0.7607	0.0918	3
$B^- ightarrow D_{ m s}^-$	(*) X 10	$.5\pm2.6\%$	3.7%	0.7599	0.0843	3
$B^0_{ m s} ightarrow D^{*-}_{ m s}$	D_{s}^{+} 10	$^{+9}_{-7}\%$	3.5%	0.8155	0.1093	3
$B^0_{ m s} ightarrow D^{*-}_{ m s}$	$D^{(*)}$ 15	$.4\pm3.9\%$	0.4%	0.7623	0.0885	5

Precision mesurement of Bs lifetime in the channel Bs $ightarrow \mu$ DsX

J. Martínez-Ortega New Perspectives, 31 May 2011 14 /14