Higgs Search In $ZH \rightarrow llbb$ at CDF

Justin Pilot Ohio State University on behalf of the CDF Collaboration

Fermilab -- New Perspectives May 31, 2011

Introduction

- Higgs boson is the last remaining undiscovered particle in the Standard Model
 - Postulated by Peter Higgs, 1964, to provide an explanation for particle masses
- Several experiments have placed limits on the Higgs mass
 - LEP excludes
 M_H < 114.4 GeV/c²
 at 95% C.L.
 - Tevatron excludes $157 < M_H < 173 \text{ GeV/c}^2$ at 95% C.L.

m_u [GeV]

Higgs Properties

Higgs Properties

Cross Section Comparison

- Higgs production cross section is ~10 - 100 fb over the mass range of interest
- Swamped by Standard Model backgrounds
 - bb production 10⁸ x Higgs
 - W, Z production 10⁵ x Higgs
- Challenge to discriminate the small number of expected Higgs events
- Before doing anything, S:B is ~ 1:10¹² !

The $ZH \rightarrow llbb$ Channel

- Search for two oppositelycharged leptons (e or μ) that reconstruct to a Z boson ($76 < M_Z < 106 \text{ GeV/c}^2$)
- Require 2 or more jets
 - Jet $1 E_T > 25 \text{ GeV}$
 - Jet $2 + E_T > 15 \text{ GeV}$
- This channel has the lowest number of produced events of all associated prod. channels
 - Benefits from a clean signal, reducing backgrounds significantly
 - All final state particles are detected and reconstructed

6

The $ZH \rightarrow llbb$ Channel

Secondary vertex

Displaced tracks

- The main background processes which contribute are:
 - *Z*+jets (*qq*, *bb* and *cc*)
 - Top pair production
 - Diboson production Decay lifetime

- To improve the signal purity, and to reject background, we require the jets to be **'b-tagged'**
 - Separate events into categories with
 1 tagged jet and
 2 tagged jets

Primary vertex

Prompt tracks

		T

TAGS	S:B
0	$3:10^4$
1	1:500
2	1:50

Before *b***-tagging**

After b-tagging

Analysis Techniques

- We can do even better than a *S*:*B* of 1 : 50 !
- The *ZH→llbb* channel uses many advanced analysis techniques to further improve the signal discrimination, as well as signal acceptance in general
- These methods are based on multivariate approaches
 Artificial Neural Networks

- Three specific examples:
 - Jet energy corrections
 - Multivariate lepton ID
 - Expert discriminants

Improving Sensitivity

- Multivariate techniques can be used to improve the dijet mass resolution
 - This is one of the most sensitive variables to Higgs discrimination

- Since we expect missing transverse energy only from jet mis-measurement, we can use this to correct the jet energies
 - Projections on individual jets

M_H	Dijet Mass Resolution		
(GeV/c^2)	No Correction	With Correction	
110	17.2%	10.8%	
120	17.7	10.5	
150	16.8	9.5	

Increasing Acceptance

- Analyses have used multivariate lepton identification
- Allows for loosening of lepton cuts, if the network is trained well enough to distinguish "good" leptons from fakes
- Multivariate electron and muon ID has resulted in significant gains in the *ZH* channel
 - Over 20% more Z candidates
 - No significant increase in fake rates

Electron NN Output

Discriminating Signal

- We use 'expert' discriminants to further isolate the signal-like events away from the background events
 - NNs trained to separate one process from another
 - Flavor separators (*b* vs. *c*)

• Using a multi-step process, we can isolate a region with significantly higher S : B than just the double *b*-tag category alone

Final Event Discriminants

- Putting all the pieces together, we obtain a final discriminating distribution used to set limits
- Best output bins can have *S* : *B* of 1 : 10 or better!

12

Any signal candidates ?

• We have observed 3 di-muon events and 1 di-electron event falling into high S:B output bins of the NN

- The event below falls in a bin with S:B of just under 1:2!
 - Using the $M_H = 115 \text{ GeV/c}^2 \text{ NN}$

More Work To Do!

- We need even more improvements to be sensitive to Higgs production
 - More data helps also!
- Latest analysis result (Summer 2010) places an expected limit on the Higgs production cross section for this channel at 5.5 times the SM prediction for a 115 GeV Higgs
 - Update is on the way for this Summer (~1 month away)!
 - Expecting significant gains due to the improvements described today

Standard Model Sensitivity

Conclusion

- Much work has gone into this analysis channel and others to squeeze out all possible acceptance gains and increases in sensitivity
- We have developed several techniques that could be extended to other analyses for similar gains
 - Multivariate lepton ID
 - Expert discriminants
- Even though the Tevatron will end operations soon, it is an exciting time as we come closer and closer to Higgs sensitivity!

