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CDF DetectorCDF Detector

 Tevatron
 1.96 TeV Collider outside 

of Chicago, IL
 CDF Detector:

 Silicon Detector
 high precision tracking 

and secondary vertex 
detection

 Tracking Chamber
 Solenoid
 EM and Hadronic 

Calorimeters
 Muon wire chambers
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Top Quark and tausTop Quark and taus

 Top Quark:
 Discovered during Run I at the 

Tevatron in 1995
 Only quark to decay before it 

hadronizes
 Has a Yukawa coupling to the 

Higgs of ~1
 Constrains the Higgs mass along 

with W
 Taus:

 First mass measurement in tau 
decay channel

 Channel for new physics
 Ex: t → H+b

Summer 10 World Average Mass: 5.6 fb-1

173.3 ± 0.6(stat) ± 0.9 (syst) GeV/c2

173.3 ± 1.1 GeV/c2

ArXiv:1007.3178
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Event SelectionEvent Selection

 Looking for hadronic τ + 
jets top decay:
 4 jets with E

t
 > 20 GeV

 at least 1 b-tagged
 Missing E

t
 > 20 GeV

 1 hadronically decaying τ
 E

t
 > 25 GeV 

 Looks like narrow jet
 1 or 3 tracks

 Leptonically decaying taus:
 May be included in standard 

lepton analyses
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What is Different About Taus?What is Different About Taus?
 Taus are harder to measure than e or μ

 Hadronically decaying tau includes a neutrino
 Now ttbar decay has 2 neutrinos
 Solution: Scan Method to reconstruct neutrino from 

tau decay
 4D scan over both neutrino angles (η

1
,φ

1
,η

2
,φ

2
)

 Use W and τ mass to solve for νE
1
 and νE

2

 Compare predicted missing E
t
 to measured to determine most 

likely neutrino angles
 Hadronically decaying tau is essentially a narrow jet

 Large QCD Background
 Solution: Neural Network to Remove QCD
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Neural Network InputNeural Network Input
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Fitting the Neural Network OutputFitting the Neural Network Output

 Diboson, Single top, Z+jets, and ttbar contributions determined 
by cross section and MC acceptance

 QCD and W+jets contributions determined by fitting shapes to 
data

Source Number of Events
0.2 ± 0.0

Single Top 0.2 ± 0.0
Z + jets 0.3 ± 0.1

0.6 ± 1.9
0.4 ± 1.1
0.2 ± 0.5

W+jets (light) 0.5 ± 2.6
QCD 10.0 ± 8.0

17.8 ± 3.9
Total Prediction 30.0 ± 9.6
Observed 41.0

CDF Run II Preliminary 2.2 fb-1

Diboson

Wbb
Wcc
Wc

ttbar



8 Daryl Hare, Rutgers University New Perspectives, 30 May 2011

Event Variable PlotsEvent Variable Plots
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Matrix Element TechniqueMatrix Element Technique

 Build likelihood function from signal and bkgd probabilities
 Calculate P

sig
 by integrating over dσ

ttbar

Normalization

Matrix Element

PDFs

Transfer Functions

P ( x⃗ ; mt)=
1

〈 Acc(mt)〉∗σttbar
∫∑ soln

4 ∣M 2∣
f ( q̃1) f ( q̃2)

∣q1∣∣q2∣
∏ (W ( x⃗ , y⃗ ))d Φ

 M calculated using parton level quantities from integration
 Integrate over m2

Whad
, m2

Wlep
, ρ

jet1
, cos α

12
, cos α

Wbhad
 Similar expression for background probability:

 Use W+4jets matrix element
 Integrate over E

jet1
, E

jet2
, E

bhad
, E

blep
, pz

ν

P ( x⃗ ;α)=ν sigP t t̄ ( x⃗ ; M top)+Abkgd (1−νsig )PW+ jets ( x⃗)
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Data ProbabilitiesData Probabilities

Signal and Background Probabilities:
Signal is taken from highest Probability point in M

top
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Linearity and Uncertainty:Linearity and Uncertainty:
 21 MC samples with mass ranging from 155 to 195 GeV/c2

 All pseudo-experiments with fully simulated backgrounds
 Mass measurement is unbiased
 Pull Widths consistent with 1

 Central Values of M
top

 expect 

 statistical uncertainty of ~5.3 GeV/c2
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Systematic UncertaintiesSystematic Uncertainties
CDF Run II Preliminary 2.2 fb-1

Systematic uncertainty 
dominated by Jet 

Energy Scale
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ResultResult

 Result (2.2 fb-1):
 173.6 ± 10.1 (stat) ± 3.7 (syst) GeV/c2

 173.6 ± 10.8 GeV/c2

 Summer 2010 World Average (5.6 fb-1):
 173.3 ± 1.1 GeV/c2

 Measurement will not improve world average, but proves 
we can do complicated physics with taus

Displayed likelihood 
function is precalibration
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Revisiting Expected UncertaintyRevisiting Expected Uncertainty

 Statistical Uncertainty
 Expected ~ 5.3 GeV/c2 
 Measured 10.1 GeV/c2

 Signal Fraction
 Ran psuedo-experiments 

with 0.59 signal fraction
 Measured low side tail
 ~3% chance
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Event DisplayEvent Display

Pt Eta Phi
Tau 65.6 0.82 50.6
Btagged Jet 53.6 -0.69 295.6
Jet 59.6 1.13 146.8
Jet 47.6 1.70 37.3
Jet 36.8 1.63 218.5

CDF Run II Preliminary 2.2 fb-1

τ
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ConclusionConclusion

 First top mass measurement using directly 
identified tau events (2.2 fb-1 of data)

 173.6 ± 10.1 (stat) ± 3.7 (syst) GeV/c2

 173.6 ± 10.8 GeV/c2

 Measurement agrees with World Average
 Agrees with top mass measured in other decay 

channels
 Taus are useful tools for identifying new physics

 We can use taus even in high jet multiplicity 
environments
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BACKUP
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Neural NetworkNeural Network

 Trained a NN to distinguish QCD in tau + 4 jet events

 Trained at pretag with no missing Et cut

 QCD tau fakes set as type 0, ttop25 type 1

 Ratio of ttbar:QCD - 1:1 

 Used a TMultilayerPerceptron network

 2 hidden layers with 10 and 4 nodes
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NN  Input VariablesNN  Input Variables

 MEt
 Σ Et tau + jets
 Σ Et tau + 2 lowest jets
 Σ Et 2 hardest jets
 Transverse M

w
 Lead Jet Et
 Average Eta Moment

 Consider non btagged jets
 Lowest Dalitz Variable

Use 8 varibles:
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Neural Network Input VariablesNeural Network Input Variables
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Neural Network Input VariablesNeural Network Input Variables
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Event Variable PlotsEvent Variable Plots
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Event Variable PlotsEvent Variable Plots
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Event Variable PlotsEvent Variable Plots
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Event DisplayEvent Display

Pt (GeV) Eta Phi
Tau 47.6 -0.49 147.7
Btagged Jet 55.3 0.56 265.8
Jet 86.1 -0.40 3.2
Jet 80.8 0.84 166.8
Jet 35.7 1.48 64.1

CDF Run II Preliminary 2.2 fb-1

τ
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Transfer Transfer 
FunctionsFunctions

 Corrected jet energy is 
not equivalent to parton 
energy

 Transfer function returns 
probability that measured 
jet x resulted from parton 
y

 Found a bias in the angle 
between two hadronic 
side W daughter jets

 Added a transfer function 
for the angle between the 
two jets

 Similar effect with 
hadronic side W and b
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