

A Matrix Element Measurement of the Top Quark Mass in the Hadronic Tau + Jets Channel

Daryl Hare and Eva Halkiadakis Rutgers University

For the CDF Collaboration

2 Daryl Hare, Rutgers University

CDF Detector

- Tevatron
 - 1.96 TeV Collider outside of Chicago, IL
- CDF Detector:
 - Silicon Detector
 - high precision tracking and secondary vertex detection
 - Tracking Chamber
 - Solenoid
 - EM and Hadronic Calorimeters
 - Muon wire chambers

Summer 10 World Average Mass: 5.6 fb⁻¹ 173.3 ± 0.6(stat) ± 0.9 (syst) GeV/c² 173.3 ± 1.1 GeV/c² ArXiv:1007.3178

Top Quark:

- Discovered during Run I at the Tevatron in 1995
- Only quark to decay before it hadronizes
- Has a Yukawa coupling to the Higgs of ~1
- Constrains the Higgs mass along with W

• Taus:

3

- First mass measurement in tau decay channel
- Channel for new physics
 - Ex: $t \rightarrow H^+b$
- Daryl Hare, Rutgers University

Top Quark and taus

Event Selection

Daryl Hare, Rutgers University

4

Looking for hadronic τ + jets top decay:

- 4 jets with $E_{f} > 20 \text{ GeV}$
 - at least 1 b-tagged
- Missing E_t > 20 GeV
- 1 hadronically decaying τ
 - E_t > 25 GeV
 - Looks like narrow jet
 - 1 or 3 tracks
- Leptonically decaying taus:
- May be included in standard lepton analyses

What is Different About Taus?

Taus are harder to measure than e or μ

- Hadronically decaying tau includes a neutrino
- Now ttbar decay has 2 neutrinos
- Solution: Scan Method to reconstruct neutrino from tau decay
 - 4D scan over both neutrino angles $(\eta_{1'}\phi_{1'}\eta_{2'}\phi_{2})$
 - Use W and τ mass to solve for v_1^{E} and v_2^{E}
 - Compare predicted missing E_t to measured to determine most likely neutrino angles
- Hadronically decaying tau is essentially a narrow jet
 - Large QCD Background
 - Solution: Neural Network to Remove QCD
- Daryl Hare, Rutgers University

5

Neural Network Input

Fitting the Neural Network Output

- Diboson, Single top, Z+jets, and ttbar contributions determined by cross section and MC acceptance
- QCD and W+jets contributions determined by fitting shapes to data
 CDF Run II Preliminary 2.2 fb⁻¹

Event Variable Plots

Matrix Element Technique

$$P(\vec{x};\alpha) = v_{sig} P_{t\bar{t}}(\vec{x};M_{top}) + A_{bkgd}(1 - v_{sig}) P_{W+jets}(\vec{x})$$

- Build likelihood function from signal and bkgd probabilities
- Calculate P_{sig} by integrating over dσ_{ttbar}

- M calculated using parton level quantities from integration
- Integrate over m^2_{Whad} , m^2_{Wlep} , ρ_{jet1} , cos α_{12} , cos α_{Wbhad}
- Similar expression for background probability:
 - Use W+4jets matrix element
 - Integrate over E_{jet1}, E_{jet2}, E_{bhad}, E_{blep}, p^z_v

Daryl Hare, Rutgers University

9

Data Probabilities

Signal and Background Probabilities:

Signal is taken from highest Probability point in M_{top}

10 Daryl Hare, Rutgers University

Linearity and Uncertainty:

- 21 MC samples with mass ranging from 155 to 195 GeV/c²
- All pseudo-experiments with fully simulated backgrounds

Systematic Uncertainties

CDF Run II Preliminary 2.2 fb⁻¹

12 Daryl Hare, Rutgers University

- * 173.6 ± 10.8 GeV/c²
- Summer 2010 World Average (5.6 fb⁻¹):

* 173.3 ± 1.1 GeV/c²

 Measurement will not improve world average, but proves we can do complicated physics with taus

Revisiting Expected Uncertainty

- Statistical Uncertainty
 - Expected ~ 5.3 GeV/c²
 - Measured 10.1 GeV/c²
- Signal Fraction
 - Ran psuedo-experiments
 with 0.59 signal fraction
 - Measured low side tail
 - ~3% chance
- 14 Daryl Hare, Rutgers University

15 Daryl Hare, Rutgers University

New Perspectives, 30 May 2011

100

Eta

0.82

-0.69

1.13

1.70

1.63

Phi

50.6

295.6

146.8

37.3

218.5

Conclusion

- First top mass measurement using directly identified tau events (2.2 fb⁻¹ of data)
 - * 173.6 \pm 10.1 (stat) \pm 3.7 (syst) GeV/c²
 - * 173.6 ± 10.8 GeV/c²
- Measurement agrees with World Average
- Agrees with top mass measured in other decay channels
- Taus are useful tools for identifying new physics
 - We can use taus even in high jet multiplicity environments
- 16 Daryl Hare, Rutgers University

BACKUP

17 Daryl Hare, Rutgers University

Neural Network

- Trained a NN to distinguish QCD in tau + 4 jet events
 - Trained at pretag with no missing Et cut
 - QCD tau fakes set as type 0, ttop25 type 1
 - Ratio of ttbar:QCD 1:1
 - Used a TMultilayerPerceptron network
 - 2 hidden layers with 10 and 4 nodes

18 Daryl Hare, Rutgers University

NN Input Variables

Use 8 varibles:

- MEt
- Σ Et tau + jets
- Σ Et tau + 2 lowest jets
- Σ Et 2 hardest jets
- Transverse M
- Lead Jet Et
- Average Eta Moment
 Consider non btagged jets
- Lowest Dalitz Variable

19 Daryl Hare, Rutgers University

Neural Network Input Variables

Neural Network Input Variables

22 Daryl Hare, Rutgers University

Event Variable Plots

Event Variable Plots

Event Display

CDF Run II Preliminary 2.2 fb⁻¹

	Pt (GeV)	Eta	Phi
Tau	47.6	-0.49	147.7
Btagged Jet	55.3	0.56	265.8
Jet	86.1	-0.40	3.2
Jet	80.8	0.84	166.8
Jet	35.7	1.48	64.1

25 Daryl Hare, Rutgers University

Transfer Functions

- Corrected jet energy is not equivalent to parton energy
- Transfer function returns probability that measured jet x resulted from parton y
- Found a bias in the angle between two hadronic side W daughter jets
- Added a transfer function for the angle between the two jets
- Similar effect with hadronic side W and b
- 26 Daryl Hare, Rutgers University

