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What is Quasi-Elastic Scattering? ‘g
—_ ; M+ :
vV + p— M-l_ 4+ n ' W
H b .

* Neutron is ejected from the nucleus, but not
necessarily observed

* |[ncoming neutrino energy and momentum transfer can
be reconstructed with just the muon kinematics

E9E=2M;’EH_(M;92+mi_mi) M;?=mp_EB
" 2(M}-E,+VE —mcos0,) £,=30 MeV
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Quasi Elastic Cross Section #;‘6

» Cross section calculated using a variety of form factors
(vector and axial vector)

— Vector form factors extracted from electron-
proton scattering

— Axial vector form factor (Dipole Approximation
shown below) must be extracted from
neutrino-nucleus scattering

M , = Axial Vector Mass
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Motivation ‘*’f?;-

» Uncertainties on neutrino interaction cross sections
are a significant systematic error for neutrino
oscillation experiments

* Quasi-Elastic scattering is a particularly useful channel
for oscillation measurements

— Fully reconstruct neutrino energy
- Flux standard candle

* Recently, MINOS found a discrepancy between
neutrino and anti-neutrino oscillation

- Both neutrino and anti-neutrino cross-sections
are needed
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The NuMI Beam Line ;;-

» Neutrinos created from pion and kaon decays

» Ability to predict pion and kaon production off the
target Is the largest uncertainty in determining our flux

Absorber Muon Monitors
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Figure by Bob Zwaska
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The MINERVA Detector s’%

* Fine grained detector that lies upstream of the MINOS
Near Detector (our muon spectrometer)

* Data that we show Is from our partially constructed
detector

Frozen Detector
« We show 4e19 "

POT worth of

Side ECAL Innnnaee:
r‘“

anti-neutrino
data (~15% of
total number of
events)

gnetic
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Active Tracker
Region

Steel Shield
Scintillator Veto Wall
Calorimeter

Hadronic
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(3 tons in 85 cm radius fiducial)

(Muon Spectrometer)

Nuclear Target Region
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MINOS Near Detector
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Example of QE Candidate Events
In MINERVA (data)

| | |
If elastic kinematics, If elastic kinematics,
- EV:2.8 GeV, Q°=0.1GeV = EV:2.5 GeV, O*=0.3GeV*

o1 |

O
30 MeV deposited in

single bar. Neutron
interaction candidate.

> .
Beam direction T ) 1 Vlefl;/él) r?]f St?;\e/gtor

Energy (MeV)
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Recoll in MINERVA A

» We summed all energy 5 cm away
from the muon track and defined
this as the recoll energy

* Found a rich QE
sample at low recoll
energy

4 Me
a8
o

Events /

* Found that If we
applied a flat recoll
cut, we lost a large
fraction of QE events Area Normalizee
at hlghel’ QZ S e M A e

MNon Tr""

Calorimetric Recoil Energy (GeV)
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Selecting a QE Rich Sample 7

For quasi-elastic scattering, Q° = 2mpv, where v is the
energy transfer to the hadron

Expect higher Q? Ty S——
events to have more S mmccas Ll
recoll energy

Made a recoll cut that
scales with Q2/2mp
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CCQE Sample after Recoil Cut &

» Distributions are absolutely normalized and include
statistical and flux errors

» Recoll cut Is very effective at selecting a very rich
guasi-elastic sample

CC Candidates CCQE Candidates (after Recoil Cut)

Preliminary HC uncertaint Preliminary
uncertainty

(Stat+Flux only)
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Reconstructed Q° A

* Have events in a broad Q° region, but with
more contamination at higher Q°

e See excess of events In Monte Carlo

CCQE Candidates (after Recoil Cut)
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Recent World Cross Section i3
Results

e Tension between various cross-section results
» Our simulation (GENIE 2.6.2) used M, = 0.99 GeV

L))

 Would «10™*° Charged Current Quasi-elastic Scattering on Carbon
M =1.35 GeV 6 —— RFG with M,=1.35 GeV
A 4 = RFG with M,=1.03 GeV
found by (2} W
MiniBooNE fit 8 R S e =
Our data bette r? 6 *  MiniBooNE with total error
4 *  NOMAD with total error (arXiv:0812.4543)
2 SciBooNE with preliminary errors
0 -
10 mNErva 10
Energy Range
Note: Cross-sections are for neutrinos
Jesse Chvojka New Perspectives — 2011, 13

University of Rochester Fermilab — Batavia, IL



Q° Separate by Energy A
1GeV <E <3GeV -

Preliminary

MC uncertainty

e » Most discrepancy comes

oo from the 3-5 GeV region
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Reweighted Q* Shape

» Reweighted Monte Carlo Q distribution does not
have better agreement with data
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Outlook A

» A different value of M, does not explain the current

data/MC disagreement we observe at this stage of
our analysis

» Will have distributions corrected for detector
smearing soon to make more rigorous
comparisons to MiniBooNE and NOMAD results

* Will incorporate additional data into the analysis

* Continuing to make strides in reconstruction and
analysis techniques
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Reconstructing QE Events Fee

* Distributions are not corrected for smearing effects in
the detector

* Good data/MC
agreement for

muon angle

’ Dlscrepancy In — L 61 02 03 04 O
muon energy Muon Angle (radians)
likely comes from __ semcimno

poor modeling of
flux at NuMl
focusing peak

10 15 20 25 a0 0. 0.2 03 0.4 0.5 0.4

Muecn Energy (GeV) Muen Angle (radians)
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Muon Energy and Angle 7>
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CCQE Selection Cuts e

Select tracks matched with muons in MINOS that have
a vertex within our
fiducial volume

Apply a flat recoll cut of
0.03 GeV up to a value
of Q* of 0.06 GeV*

VEVCE! QZ/2mp cut on

recoll energy in the
detector for Q° greater
than 0.06 GeV*
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NuMI Beam Flux A

~35 E12 POT per spilll

Spill length/frequency = 10
us/0.5 Hz

Beam power: 300-350 kW

Goal — 7% shape error,
10% normalization error
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NuMI Beam Flux

Three strategies:

";"‘_"’%::;;t-
’ ;*» R e
@) 0"

7 /J

Vary horn current and distance i Fom § Angl

- Hern 2 Angle

of target from horns, study how : Horn 1 Offse

Horn 2 Offset

event rates change | - Horn Current

Horn Current Distribution

Baffle Scraping

Measure muons from ' = Chase

- Protons on Target

pion/kaon decays with muon
monitors to predict pion/kaon
production off the target

Use world hadron production

- - 4 6'8 10 12 14 16 18
data to predict pion and kaon Neutrino Energy (GeV)
production
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GENIE Generator Details ¥

For QE Generation, specific details of model are:

$) 0"

— General equation is Llewellwyn-Smith (with lepton
mass terms)

- The pseudo-scalar form factor is taken from PCAC

- Eletromagnetic form factors are BBBA2005 (hep-
ex/0602017)

- The nuclear model is a fermi gas, with a high
momentum component included (taken from Bodek
and Ritchie - Phys.Rev. D23 (1981) 1070)

- Pauli blocking is applied by requiring the outgoing
nucleon has momentum above the fermi momentum
for the nucleus in question, 221 MeV/c for carbon
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