

Tagging Michel Electrons in MINERvA

Dun Zhang

College of William and Mary 2011-05-31

Outline

- Overview of Minerva detector
- Introduction to Michel electrons and their properties in MINERvA detector
- Procedures to tag Michel electrons
- Results from tagging Michel electrons using MC and RECO data for different part of our detector
- Summary

Detector's Overview

tracker

Strip number X/U/V direction

Module number Z direction

V-X

U-X 05/31/2011

Dun Zhang / William & Mary / Minerva / New Perspectives

ECA

Introduction

• The dominant decay mode of muons is to decay into an electron, an electron antineutrino and a muon neutrino.

 $\mu^{-} \rightarrow e^{-} + \nu_{\mu} + \nu_{e}$

 $\mu^+ \rightarrow e^+ + \overline{\nu}_{\mu} + \nu_{e}$

- The electron produced in muon decay is named Michel electron.
- Muons could be captured by Minerva detector, and the capture rate is about 7.8% in carbon. It will produce a neutron and a neutrino, sometimes photon.

More Applications

 To identify low energy pions coming out of neutrino interaction vertex via

 $\pi \rightarrow \mu \nu \rightarrow e_i \nu \nu$

To calibrate the detector's energy scale
To validate the attenuation correction

Properties in Detector

• We focus on the tracker and ECAL region of Minerva detector. Tracker is 1.7cm thick plastic scintillator and ECAL contains 2mm thick lead absorber per scintillator plane.

- Maximum energy of Michels is 53 MeV.
- Electrons with energy of 53 MeV can travel around **30 cm** in our scintillator.
- The decay time of negative muon is 2026 ns in carbon and 2190 ns in vacuum.

05/31/2011

Dun Zhang / William & Mary / Minerva / New Perspectives

particle

Tagging Procedure

- We study every track which stops in the tracker or ECAL
- Look at the events later than the track
- Loop over the clusters in the event in three different views and for each cluster, check whether it is 'Qualified Cluster'
- If we find qualified clusters in two or three views, tag them as two view/three view Michel electrons. If we find qualified clusters in one view and the summed energy is greater than 10 MeV, tag it as one view Michel electron.

05/31/2011

Qualified Clusters

- A cluster is a collection of single scintillator strip hits.
 - Energy is the total energy of all hits
 - Position is the energy weighted position
- Qualified Cluster requires:
 - Total energy > 1 MeV
 - Along Z direction, distance to the track's end < 8 cm
 - Along X/U/V direction, distance < 12 cm
- Qualified Clusters are part of tag so the requirements are strict.

Interesting Reconstructed Quantities

- Energy: add <u>all the clusters</u>' energy in the 30 cm region near the end of track
- Decay time: choose the time difference between the track and the <u>earliest qualified</u> <u>cluster</u>
- Distance: the smallest distance among all distances from the <u>qualified clusters</u> to the track's end
 - Note that: for some events, only 2D distance can be calculated

MC Study in Tracker

 The data was generated from muons with momentum 300 MeV/c starting at the middle of detector

Prelim	Preliminary Total incoming		Two view and three view Michel electrons		
	2000 Reconstructed contained tracks 1424 Stopped in tracker 1108	Remaining tracks	Found qualified cluster in one view	Energy > 10 MeV	123
				Energy < 10 MeV	32
			No qualified cluster found		168

05/31/2011

Decay Time: Data vs MC

05/31/2011

Muon Lifetime from Fitting:

Preliminary Tracker	Monte Carlo (ns)	DATA (ns)
One view Michel	1950 ± 60	2330 ± 30
Two view Michel	2110 ± 30	2120 ± 20
Three view Michel	2120 ± 50	2130 ± 30
All Michel	2120 ± 20	2200 ± 10

• Results are within around 2 σ of nominal lifetime in carbon • MC is pure muons coming into the detector while data saw a combination of μ^2 and μ^4 mostly μ^2 .

We will see a possible explanation why one view Michel performed poorly

05/31/2011

Dun Zhang / William & Mary / Minerva / New Perspectives

 $\mu^{+} + \mu$

Energy Distributions

Dun Zhang / William & Mary / Minerva / New Perspectives

05/31/2011

Energy Distributions in ECAL

The electromagnetic calorimeter (ECAL) has one 2 mm_Pb absorber per scintillator plane.

Summary

- Michel electrons can be used to tag muon tracks, pion near the vertex and calibrate the detector's energy scale.
- We have written an algorithm to select electrons produced in muon decay.
- We will try to improve the efficiency and characterize the performance of our algorithm.
- Three topological categories: three view and two view have good efficiency and low background. Events that only show up in one of the three possible views have higher background.
- The energy distributions from data and MC agree very well, and the decay time distributions look reasonable but we don't understand them perfectly.

Thank you!

05/31/2011

backup

Attenuation Correction

Used to validate the attenuation correction

Background Study

- We selected two subsets of our data sample, aiming to study the background
 - Early tracks < 3000ns and Late tracks > 8000ns

Energy distribution of Michel electrons from early and late tracks

Dun Zhang / William & Mary / Minerva / New Perspectives

05/31/2011

Decay time distribution of Michel electrons from early and late tracks

