

LFV+LFU in neutral-current b/c decays at Belle II ''penguin highway and the third lepton''

karim.trabelsi@ijclab.in2p3.fr 2020/09/28

Belle II, a flavour-factory, <u>a rich physics program...</u>

- We plan to collect (at least) 50 ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
 - a (Super) B-factory (~ $1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)

- a (Super) charm factory (~ $1.3 \times 10^9 c \overline{c}$ pairs per ab⁻¹)
- (but also charmonium , X, Y, Z, pentaquarks , tetraquarks , bottomonium ...)
- a (Super) τ factory (~0.9 $\times\,10^9\,\,\tau^{\scriptscriptstyle +}\,\tau^{\scriptscriptstyle -}$ pairs per $ab^{-1})$
- exploit the clean e^+e^- environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...

SuperKEKB, the first new collider in particle physics since the LHC in 2008 (electron-positron (e^+e^-) rather than proton-proton (p-p))

SuperKEKB/Belle II status

- \circ successfully introduced this spring, crab waist for LER/HER
- despite difficult conditions, continued to take data since March ! beyond to 2.4×10³⁴/cm²/s !

record of KEKB/Belle 2.1×10^{34} /cm²/s currents >1A record of PEPII/BaBar 1.2×10^{34} /cm²/s currents >2A

Belle II detector

EM Calorimeter : CsI(Tl) waveform sampling

Vertex Detector 1/2 layers DEPFET + 4 layers DSSD

Installation of Vertex Detector (Fall 2018)

K_L and muon detector Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (endcaps)

Particle Identification Time-Of-Propagation counter (barrel) Prox. focusing Aerogel RICH

Central Drift Chamber He (50%):C₂H₆ (50%)small cells, long level arm, fast electronics

on - going DAQ upgrade (to be installed in 2020 - 2021)

PCIe 40 board, capable of reading via high speed optical links and to write to computer at rate of 100 Gb/s: limited number of boards (20) enough to read entire Belle II detector (P.Robbe, D.Charlet et al)

considering now VTX upgrade (2025 or later) also luminometer LumiBelle2, P.Bambade et al)

Belle(II), LHCb side by side

Belle (II)

 $e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$

at Y(4S): 2 B's (B⁰ or B⁺) and nothing else \Rightarrow clean events

(flavour tagging, B tagging, missing energy)

$$\begin{split} \sigma_{b\overline{b}} &\sim 1\,nb \Rightarrow 1\,\,fb^{-1}\,\,produces\,\,10^6\,B\,\overline{B} \\ \sigma_{b\overline{b}}/\sigma_{total} &\sim 1/4 \end{split}$$

LHCb

 $pp \rightarrow b\overline{b}X$ production of B^+ , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event \Rightarrow lower reconstruction efficiencies

 $\sigma_{b \, \overline{b}}$ much higher than at the $Y(4 \, S)$

	√s [GeV]	σ _{ьნ} [nb]	$\sigma_{_{bb}}$ / $\sigma_{_{tot}}$
HERA pA	42 GeV	~30	~10 ⁻⁶
Tevatron	2 TeV	5000	~10 ⁻³
	8 TeV	~3x10 ⁵	~ 5x10 ⁻³
LHC	14 TeV	~6x10 ⁵	~10 ⁻²

b $\overline{\mathbf{b}}$ **production cross-section at IHCb** ~ 500,000 × BaBar/Belle !!

 $\sigma_{b\overline{b}}/\sigma_{total}$ much lower than at the Y(4S) \Rightarrow lower trigger efficiencies

B mesons live relativey long

mean decay length $\beta \gamma c \tau \sim 200 \mu m$ mean decay length $\beta \gamma c \tau \sim 7 mm$ data taking period(s)(displaced vertices) $[1999-2010] = 1 ab^{-1}$ $[run I: 2010-2012] = 3 fb^{-1}$,[2019-...] = ... $[run II: 2015-2018] = 6 fb^{-1}$ Belle II from 2019] $\Rightarrow 50 ab^{-1}$ [LHCb upgrade from 2021]

Lepton (non) universality using $B^+ \rightarrow K^{(*)} l^+ l^-$ decays

no evidence of New Physics in a series of ''clean'' flavor-changing observables, such as $\Delta F=2$, also $b \rightarrow s \gamma$ but ...

Lepton (non) universality using $B^+ \rightarrow K^{(*)} l^+ l^-$ decays

Model candidates

- ✓ Effective operator from Z' exchange
- ✓ Extra U(1) symmetry with flavor dependent charge

♦ Models with leptoquarks

- ✓ Effective operator from LQ exchange
- $\checkmark\,$ Yukawa interaction with LQs provide flavor violation

♦ Models with loop induced effective operator

- ✓ With extended Higgs sector and/or vector like quarks/leptons
- ✓ Flavor violation from new Yukawa interactions

Leptoquarks are color-triplet bosons that carry both lepton and baryon numbers

Lot of those models predict also LFV $b \rightarrow s e \mu$, $b \rightarrow s e \tau$,...

(see D.Becirevic, S.Descotes-Genon's work)

G.Isidori , FPCP 2020: correlations among $b \rightarrow s(d)ll'$ within the U(2)-based EFT

	μμ (ее)	ττ	vv	τμ	μe
$b \rightarrow s$	R _K , R _{K*}	$\begin{array}{c} \mathbf{B} \to \mathbf{K}^{(*)} \tau \tau \\ \hline \to 100 \times \mathrm{SM} \end{array}$	$B \rightarrow K^{(*)} \nu \nu$ $O(1)$	$\begin{array}{c} B \rightarrow K \tau \mu \\ \hline \rightarrow 10^{-6} \end{array}$	В → К µе ???
$b \rightarrow d$	$\begin{array}{l} B_{d} \rightarrow \mu\mu\\ B \rightarrow \pi \mu\mu\\ B_{s} \rightarrow K^{(*)} \mu\mu\\ O(20\%) [R_{K}=R_{\pi}] \end{array}$	$B \rightarrow \pi \tau\tau$ $\rightarrow 100 \times SM$	$B \rightarrow \pi \nu \nu$ $O(1)$	$\frac{B \to \pi \tau \mu}{\to 10^{-7}}$	$B \rightarrow \pi \mu e$???

Event reconstruction in B \rightarrow D^{(*)} \tau \gamma at B factories

2HDM (type II): $B(B \rightarrow D\tau^{\dagger}\nu) = G_F^2 \tau_B |V_{cb}|^2 f(F_V, F_S, \frac{m_B^2}{m_{H^{\dagger}}^2} \tan^2 \beta)$

uncertainties from form factors F_v and F_s can be studied with $B \! \rightarrow \! D l \nu \, (\text{more form factors in } B \! \rightarrow \! D^* \tau \nu)$

Hadronic full reconstruction at Belle II

Particle	# channels (Belle)	# channels (Belle II)
D*/D**/D _s *	18	26
D ⁰ /D* ⁰	12	17
B+	17	29
B ⁰	14	26

Algorithm	MVA	Efficiency	Purity
Belle v1 (2004)	Cut based (Vcb)		
Belle v3 (2007)	Cut based	0.1	0.25
Belle NB (2011)	Neurobayes	0.2	0.25
Belle II FEI (2017)	Fast BDT	1 0.5	0.25
		/	

Improvement to tagging efficiency in Belle II

 More modes used for tag-side hadronic B than Belle, multiple classifiers

 Good performances on Belle II predicted beam background conditions:

 q^2 range for predictions for $B \rightarrow H\tau^+\tau^-$: from $4 m_{\tau}^2 (\sim 12.6 \text{ GeV}^2)$ to $(m_B - m_H)^2$

[B.Capdevila et al, arXiv:1712.01919]

to avoid contributions from resonant decay greatly enhanced in NP models... through $\psi(2S)$, $B \rightarrow H \psi(2S)$, $\psi(2S) \rightarrow \tau^+ \tau^$ predictions restricted to $q^2 > 15 \text{ GeV}^2$: 10 $B(B \rightarrow K \tau^{+} \tau^{-})_{SM} = (1.2 \pm 0.1) \ 10^{-7}$ 8 $B(B \rightarrow K^* \tau^+ \tau^-)_{SM} = (1.0 \pm 0.1) 10^{-7}$ R_{n(*)}&R_J/ψ 2σ $Br \times 10^4$ 6 R_n(*) & R_J/ψ 1σ \blacksquare Br[$B_s \rightarrow \tau \tau$] Br[B→K^{*}ττ] 4 strategy used: [BaBar, arXiv:1605.09637] Br[B→Kττ] \square Br[B_s $\rightarrow \phi \tau \tau$] B fully reconstructed (had tag), $\tau^+ \rightarrow l^+ \nu_1 \nu_{\tau}$ 2 Entries/0.04 background: 250 mostly $B \rightarrow D^{(*)} l \overline{v_1}, D^{(*)} \rightarrow K l' \overline{v_{1'}}$ 1.2 1.3 1.4 1.5 1.1 R_X/R_X^{SM} 150 100 0.4 0 0.2 0.6 0.8 1.2 1.4 -0.2MLP output

BaBar's result with had tag: $B(B^+ \rightarrow K^+ \tau^+ \tau^-) < 2.25 \times 10^{-3}$ at 90% CL

[Belle II, arXiv:1808.10567]

Observables	Belle $0.71 \text{ ab}^{-1} (0.12 \text{ ab}^{-1})$	Belle II 5 ab ⁻¹	Belle II 50 ab ⁻¹
$Br(B^+ \rightarrow K^+ \tau^+ \tau^-) \cdot 10^5$	< 32	< 6.5	< 2.0

this is the result with had tag.... (on-going thesis at IJCLab from G.de Marino)

specific to PS³

- hierarchical symmetry breaking pattern relates flavour-dependent LQ couplings to Yukawa hierarchies
- LQ coupling also to right-handed fermions

LFV $B \rightarrow K \tau l (l = e, \mu)$ decays

[BaBar, arXiv:1204.2852] strategy used: B fully reconstructed (had tag), $\tau^+ \rightarrow l^+ \nu_1 \nu_{\tau}$, $(n \pi^0) \pi \nu$, with $n \ge 0$ using momenta of K, l and B, **can fully determine the** τ **four-momentum** unique system: no other neutrino than the ones from one tau ($\neq B \rightarrow \tau \nu$, D^(*) $\tau \nu$...)

B(**B**⁺→**K**⁺τ⁻μ⁺) < 4.5 × 10⁻⁵ at 90%CL, **B**(**B**⁺→**K**⁺τ⁺μ⁻) < 2.8 × 10⁻⁵ at 90%CL (also results for B→K⁺τ[±]e[∓], B→π⁺τ[±]μ[∓], B→π⁺τ[±]e[∓] modes)

[LHCb, arXiv:2003.04352]

Search for the lepton favour violating decay $B^+ \rightarrow K^+ \mu^- \tau^+$ using B_{s2}^{*0} decays, $B_{s2}^{*0} \rightarrow B^+ K^- Br(K^+ \tau^+ \mu^-) < 3.9 \times 10^{-5}$ at 90%CL

⇒ can we do better ? combining hadronic tag with an more inclusive tag ?...

B-tagging...

[Belle (II), G.de Marino]

standard tagging methods: hadronic and semi-leptonic other possibilities ? semi-inclusive, a.k.a c-tag...

 \Rightarrow B-tagging... but better to talk about charged B tag or neutral B tag

- Exploit the high B.R. of $B^+ \rightarrow \overline{D}^0 X$
- → reconstruct D^0 + inclusive X

semi-inclusive, intermediate tagging method
way to probe the tag side

- Application in $B \rightarrow K \tau l$, where the topology with K+l allows looser reconstruction in B_{tag} side
 - 1) D is reconstructed
 - 2) Primary K and l, and τ decay prong are chosen
 - 3) ''D + X'' provides the tag side B

⇒ promising avenue as much higher efficiency, though with larger background

LFU and LFV in c \rightarrow ul^+l^-

- ⇒ 1-2 orders of magnitude more stringent constraints !
- ⇒ Belle II should provide ULs at 10^{-7}

La Belle (II) aventure

- SuperKEKB/Belle II just started their journey to 50 ab⁻¹
- $\circ~$ NP searches in B physics with τ leptons
 - Sharpening our tools: B tagging is the key
 - exclusive approach: hadronic/semi-leptonic tags
 - more inclusive approach is promising