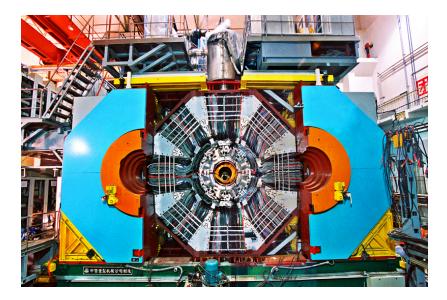
cLFV Searches at BESIII and Super Tau-Charm Factory

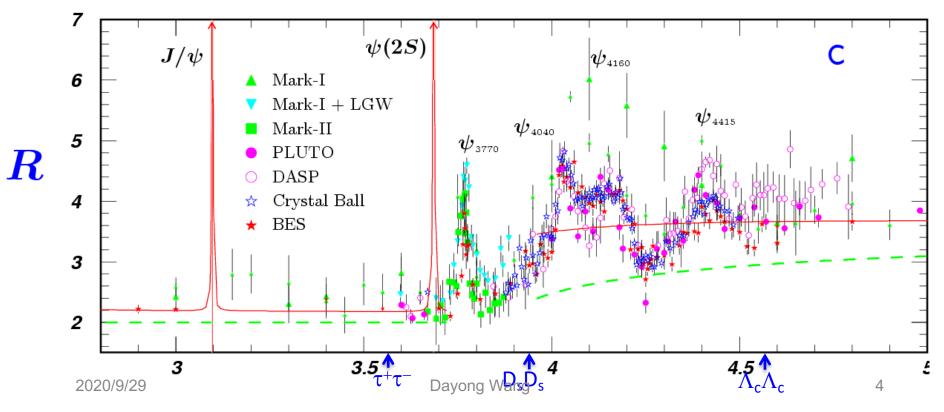
Dayong Wang Peking University dayong.wang@pku.edu.cn (for BESIII Collaboration)

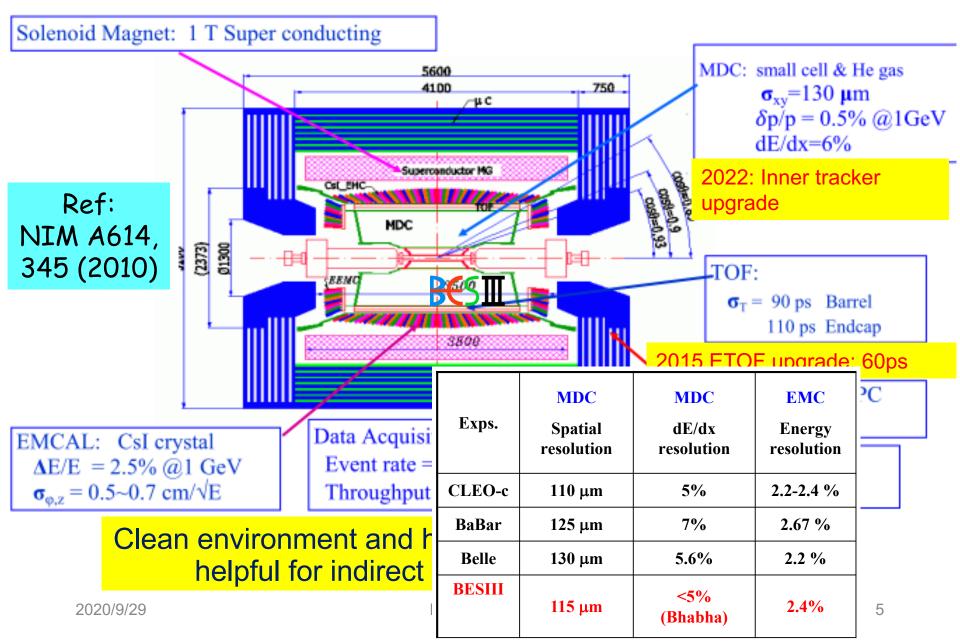

LFV and LUV in meson and baryon decays Sep 29 2020

Outline

- About BESIII Exp
- Example: $J/\psi \rightarrow e\mu$ Analysis
- Ongoing and Potential cLFV topics
- Future prospects at BESIII & STCF
- Summary

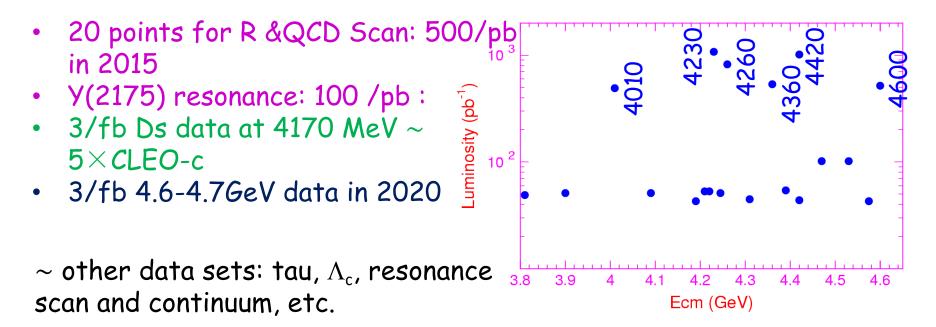
BEPCII and BESIII Exp



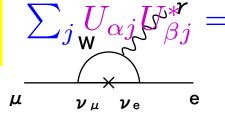

- **BEPCII** is an e+e- collider currently running at τ -charm energy
- First collision in 2008, physics run started in 2009
- BEPCII reached peak lumi of 1x10³³ cm⁻²s⁻¹@1.89GeV in April 2016
- More than 300 journal publications
- **BESIII collaboration includes** ~500 collaborators, still growing

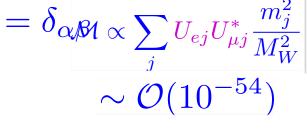
BEPCII: a τ-c Factory

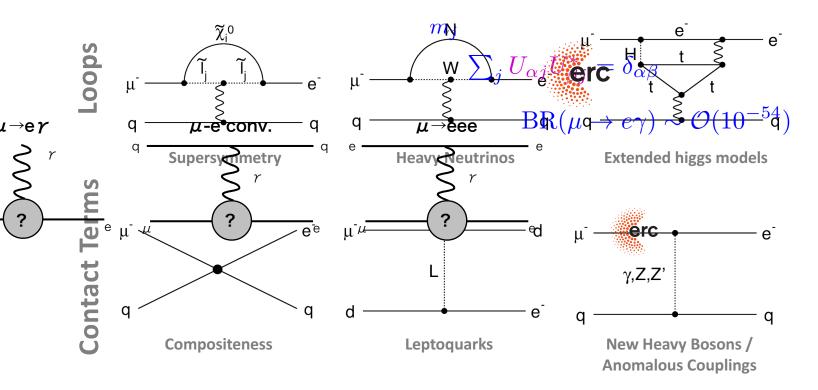
- □ Rich of resonances, charmonia and charmed mesons.
- **Threshold** characteristics (pairs of τ , D, D_s, charmed baryons...).
- Transition between perturbative and non-perturbative QCD.
 New hadrons: glueballs, hybrids, multi-quark states
- New Physics: high lumi, large datasets, hermetic detector with good performance


BESIII Detector

BESIII data samples


~ 0.5 B	$\psi(3686)$ events	~ 24×CLEO-c
<u>~ 1.3 B</u>	J/ψ events	~ 21×BESII
~ 2.9/fb	$\psi(3770)$	~ 3.5×CLEO-c

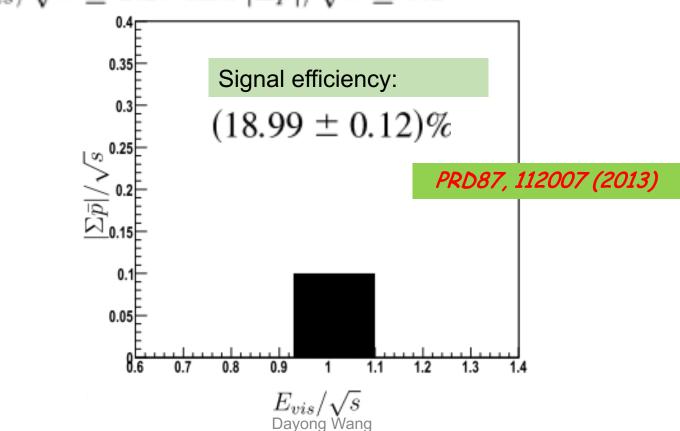

~16/fb XYZ states above 4 GeV Unique


General: Search for cLFV

Considering neutrino mixing, extended vSM

Possible CLFV from NP models

cLFV in Jpsi decays

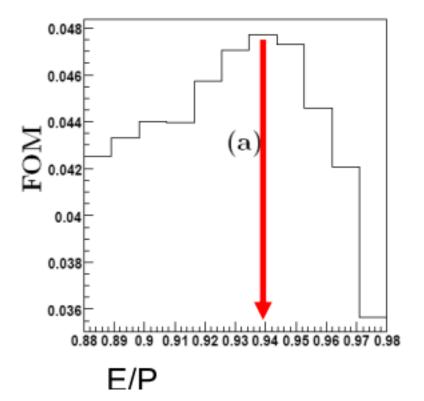

- The cLFV search in lepton decay, pseudoscalar meson decay and vector meson decay etc with no evidence. Equally important to search it in heavy quarkonium decays.
- The cLFV decays of vector mesons V → l_il_j are also predicted in various of extension models of SM^[1]:
 B⁹⁰_{UL}(J/ψ → eμ) < 10⁻¹³
 B⁹⁰_{UL}(J/ψ → e(μ)τ)) < 10⁻⁹
- J/ψ LFV decays have been measured by BES collaboration.

	BES	BESIII	
$J/\psi ightarrow e\mu$	$< 1.1 \times 10^{-6}$	$< 1.6 \times 10^{-7}$	
$J/\psi ightarrow e au$	$< 8.3 \times 10^{-6}$	- [1]• Phys	s. Rev. D 63, 0
$J/\psi ightarrow \mu au$	$< 2.0 \times 10^{-6}$		ett. A 27, 125017

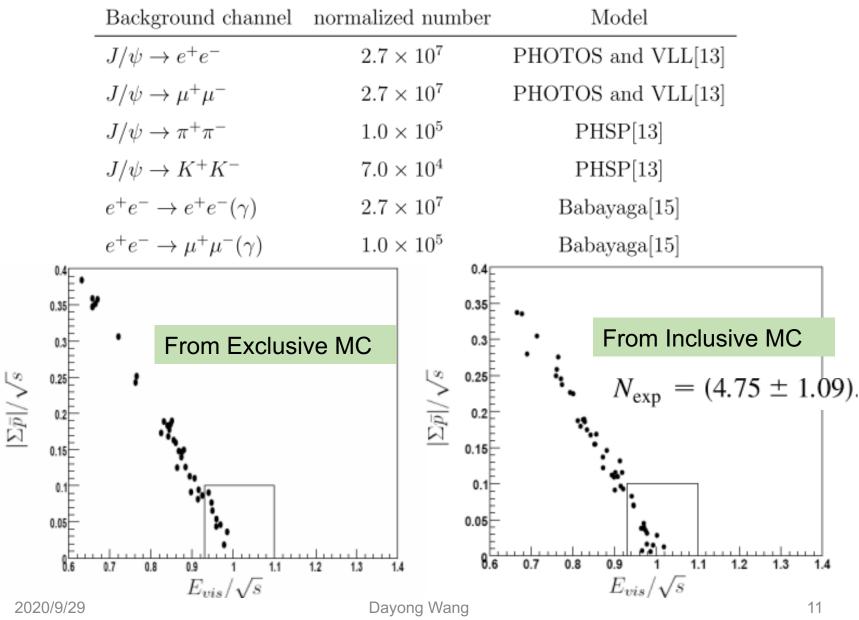
Search for $J/\psi \rightarrow e\mu(w/225M Jpsi)$ Signal box definition based on MC

 $|\Sigma \bar{p}|/\sqrt{s} \pm 2\sigma$ and $E_{vis}/\sqrt{s} \pm 2\sigma$

 $0.93 \leq E_{vis}/\sqrt{s} \leq 1.10$ and $|\Sigma \bar{p}|/\sqrt{s} \leq 0.1$


Event Selection Optimization

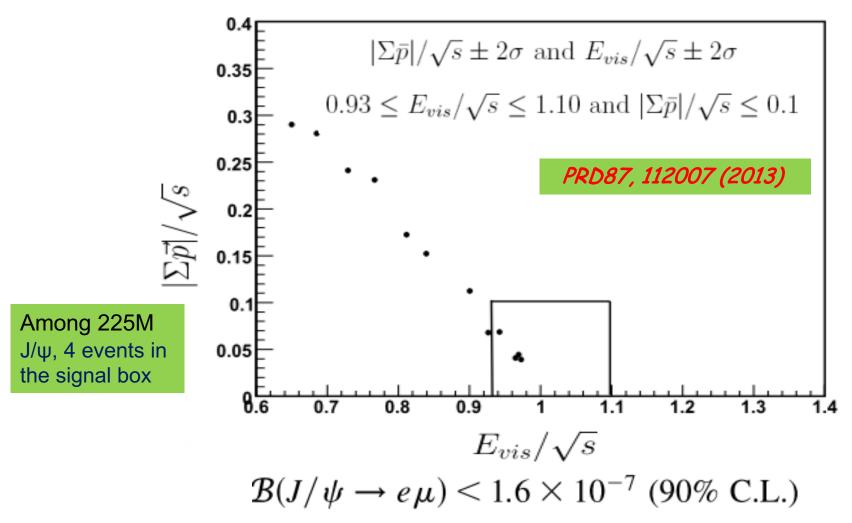
cut optimization


FOM =
$$\frac{\epsilon}{\sum_{N_{\text{obs}}=0}^{\infty} P(N_{\text{obs}}|N_{\text{exp}}) \cdot UL(N_{\text{obs}}|N_{\text{exp}})}$$

The optimized cuts after maximizing the FOM

Criteria	optimized value
$ \Delta \theta <$	0.9°
$ \Delta \phi <$	1.4°
egam <	$15 { m MeV}$
egam1 <	$50 { m MeV}$
egam2 <	$15 { m MeV}$
for e: $E/P >$	0.94
for e: $ \chi^e_{dE/dx} <$	1.8
for μ : $\chi^e_{dE/dx} <$	-1.8
for μ : Depth >	$40~{\rm cm}$

Background study


Systematic Uncertainties

Sources	Error
e^{\pm} tracking	$\frac{1.00}{1.00} \psi' \rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow e^+e^-, \mu^+\mu^-$
μ^{\pm} tracking	1.00
e^{\pm} ID	$0.62 \longrightarrow J/\psi \rightarrow ee =$
μ^{\pm} ID	$ \overset{0.04}{536} \longrightarrow J/\psi \rightarrow \mu\mu $
Acollinearity, acoplanarity	5.36
Photon veto	$5.36 \qquad J/\psi \to \mu\mu$
$N_{J/\psi}$	$\int_{5.84}^{1.24} J/\psi \to \pi\pi$
Total	5.84 $J' \psi \rightarrow \pi \pi$

Relative, most from control samples, in percentage

Dayong Wang

$J/\psi \rightarrow e\mu$: Unblinded Results

Dayong Wang

Future BESIII upgrade & data sets

Extended running of another 5-8 years, with upgrade in both energy and lumi **Top-up injection since 2019, energy increase up to 4.9GeV soon**

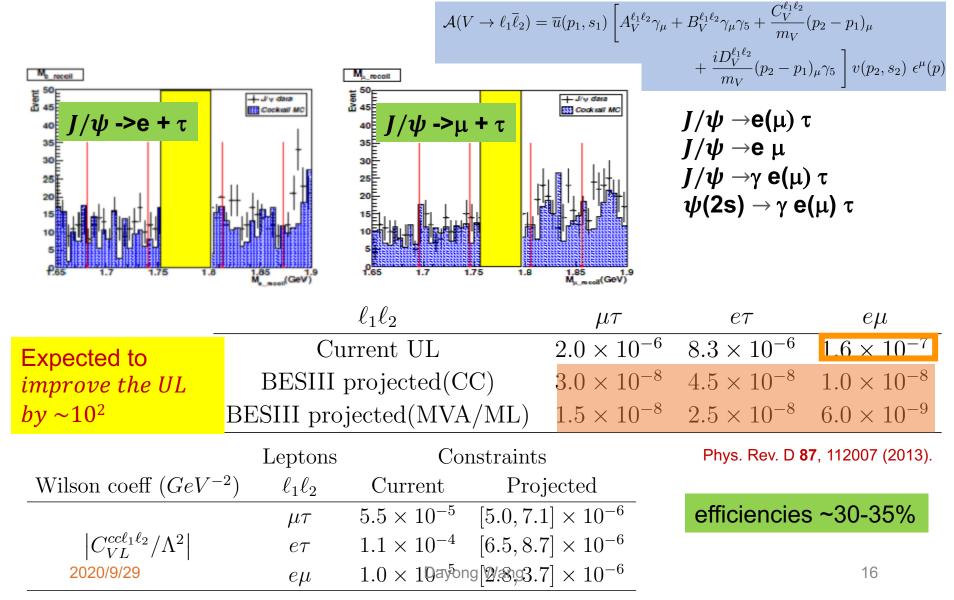
Energy	Physics motivations	Expected final data	
1.8 - 2.0 GeV	R values Nucleon cross-sections	0.1 fb^{-1} (fine scan)	
2.0 - 3.1 GeV	R values Cross-sections	omplete scan (additional points)	
J/ψ peak	Light hadron & Glueball J/ψ decays	3.2 fb^{-1} (10 billion)	
$\psi(3686)$ peak	Light hadron & Glueball Charmonium decays	4.5 fb^{-1} (3.0 billion)	
$\psi(3770)$ peak	D^0/D^{\pm} decays	20.0 fb^{-1}	
3.8 - 4.6 GeV	<i>R</i> values <i>XYZ</i> /Open charm	No requirement	
4.180 GeV	D_s decay XYZ /Open charm	6 fb^{-1}	
4.0 - 4.6 GeV	XYZ/Open charm Higher charmonia cross-sections	30 fb ⁻¹ at different \sqrt{s}	
4.6 - 4.9 GeV	Charmed baryon/XYZ cross-sections	15 fb ⁻¹ at different \sqrt{s}	
4.74 GeV	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	1.0 fb^{-1}	
4.91 GeV	$\Sigma_c \bar{\Sigma}_c$ cross-section	1.0 fb^{-1}	
4.95 GeV	Ξ_c decays	$1.0 \mathrm{fb}^{-1}$	
	Chinese Phys. C 44, 040001 ((2020).	

Dayong Wang

Jspi cLFV decay beyond eµ

$$J/\psi
ightarrow e^+ \tau^- \ \tau^-
ightarrow \mu^- \overline{v}_\mu v_\tau + cc.$$

 $J/\psi
ightarrow \mu^+ \tau^- \ \tau^-
ightarrow e^- \overline{v}_e v_\tau + cc.$

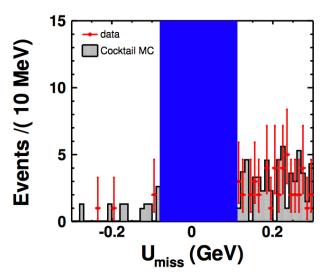

$$J/\psi \to \gamma e^+ \tau^- \quad \tau^- \to \mu^- \overline{v}_\mu v_\tau + cc.$$

- ✓ From preliminary MC studies, the efficiencies could reach
 ~30-35%, and the BR sensitivity could be in the level of 1E-8 to 1E-7
- ✓ Better up limit could be achieved if QED description & PID on muons improved

 ✓ Detailed data analysis without photons is being performed (J/ψ-> e τ/μτ)
 ✓ Channels with photons are also in investigation (J/ψ-> γeт/γμτ)

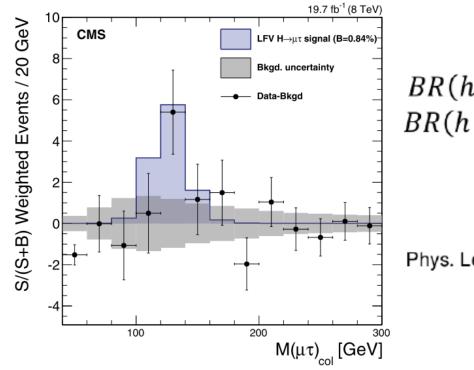
cLFV processes from psi(2S), D, η and $\eta'\,$ decays are also possibly to search at BESIII, esp for final datasets

cLFV searches in J/ψ : Prospects



$J/\psi \rightarrow e\tau$ via hadronic modes

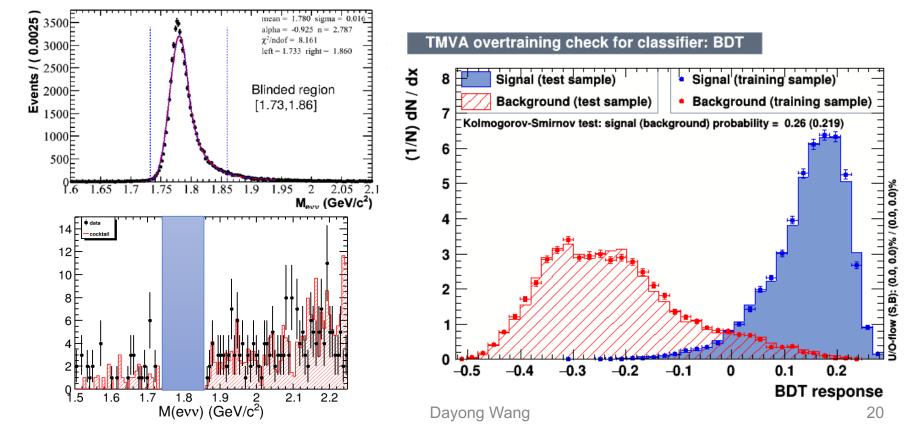
- Search for Charged Lepton Flavor Violation Process $J/\psi \rightarrow e\tau$ with $\tau \rightarrow \pi \pi^0 \nu$ with 10 billions J/ψ events.
- Semi-blind analysis is used in this study to avoid possible biases from the experimentalist.
- Signal MC sample, J/ψ inclusive MC sample, J/ψ exclusive MC samples, and continuum data are used to optimize event selection criteria and study background.
- Most systematic uncertainties are determined from comparisons of MC with clean, high statistics control samples.
- Small portion (~10%) of data are used for validation. The upper limit is given with a profile likelihood method.
- After verifying the analysis strategies, the whole data set is unblinded and the final upper limit is given.


Sensitivity projection

• Cocktail MC sample is comparable with the J/ψ data sample in the sideband regions.

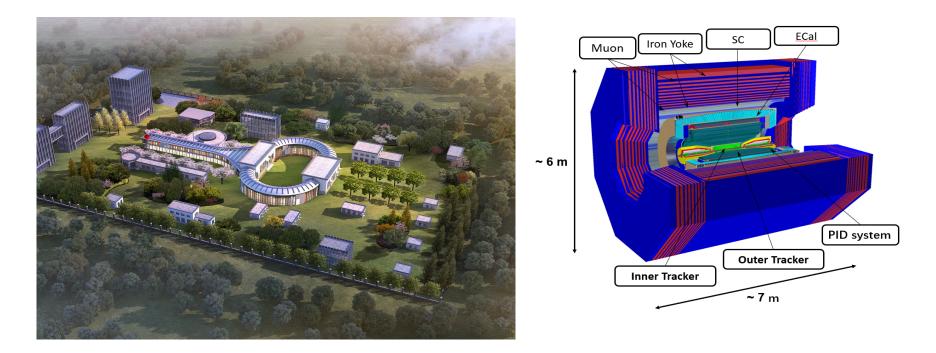
• The upper limit of branching ratio could be up to 10^{-8} with 10 billion J/ψ data.

Search for $J/\psi \rightarrow \gamma \mu \tau / \gamma e \tau$


$$\begin{split} BR(h \to \tau \mu) &< 1.51\% \; (95\% \; C.L.) \\ BR(h \to \tau \mu) &= 0.89^{+0.39}_{-0.37}\% \; (2.46\sigma) \\ &|y_{\tau \mu}| \leq 3.6 \times 10^{-3} \end{split}$$

Phys. Lett. B 749 (2015) 337

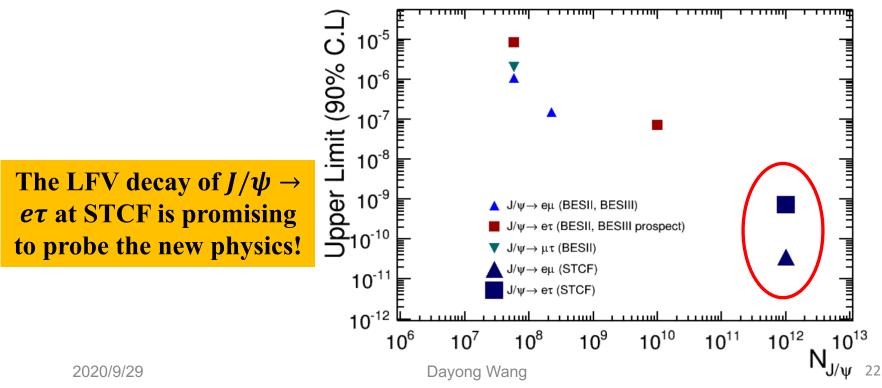
- Non-trival Yukawa coupling? enhance flavor changing rates
- Higgs induced CLFV with the Cheng-Sher Ansatz
- Inspire search in heavy quarkonium decays


Sensitivity projection

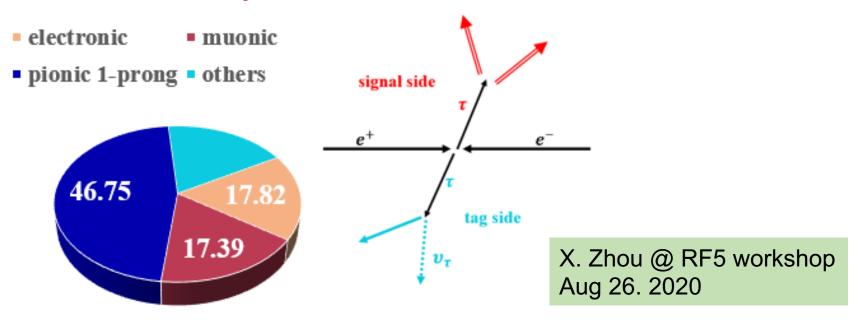
- Set 3σ band in M_{evv} distribution as signal region.
- MVA method with cocktail MC and toy model
- Sensitivity projection with 10 billion J/ ψ sample: 10⁻⁸

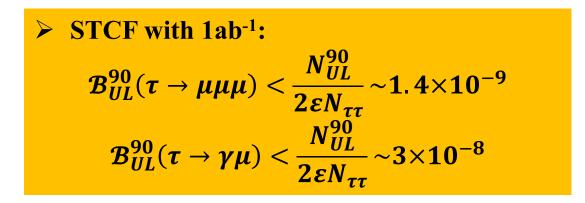
Proposed STCF in China

- Peaking luminosity $(0.5-1) \times 10^{35}$ cm⁻²s⁻¹ at 4 GeV
- Energy range $E_{cm} = 2-7 \text{ GeV}$
- Potential to increase luminosity and realize beam polarization



J/ψ LFV decays at STCF


• At STCF, 1 trillion J/ψ can be obtained per year, taken efficiency from BESIII, the upper limit can be predicted to be:


 $\begin{aligned} \mathcal{B}^{90}_{UL}(J/\psi \to e\mu) &< 4 \times 10^{-11} \\ \mathcal{B}^{90}_{UL}(J/\psi \to e\tau)) &< 7 \times 10^{-10} \end{aligned}$

• The $\mathcal{B}_{UL}^{90}(J/\psi \to e\tau)$) can be further **optimized** with better e/π id.

LFV decay of **t** at STCF

Summary

- High lumi and good detector enables BESIII sensitive to LFV in meson decays
- The published results on $J/\psi \rightarrow e\mu$ yield the best limit from Heavy Quarkonium decays, updates with 10B Jpsi is ongoing.
- LFV J/ ψ decays involving τ are going on, would be more close to probe some models
- With further BESIII operation and STCF, more possibility will be further explored