
Lepton Flavor and Universality Violation at FCCee

Marcin Chrzaszcz mchrzasz@cern.ch

Snowmass, 28th September 2020

International FCC collaboration with CERN as host lab to study:

- ~100 km tunnel infrastructure in Geneva area, linked to CERN
- e⁺e⁻ collider (FCC-ee),
 → potential first step
- pp-collider (FCC-hh)
 → long-term goal, defining infrastructure requirements

~16 T ⇒ 100 TeV pp in 100 km

- HE-LHC with FCC-hh technology
- lons and lepton-hadron options with hadron colliders

FCC

FCC-ee:

- ~20-50 fold improved precision on many EW quantities (equiv. to factor 5-7 in mass) (m_{Z,} m_W, m_{top}, $\sin^2\theta_w^{\rm eff}$, R_b, $\alpha_{\rm QED}$ (m_z) $\alpha_{\rm s}$ (m_z m_W m_τ), Higgs and top quark couplings)
- Exploraing 10 100 TeV energy scale via couplings with precision measurements
- Machine design for highest luminosities at Z, WW, ZH and ttbar working points

FCC-hh:

- Highest center of mass energy for direct production up to 20 30 TeV
- Huge rates for single and multiple production of SM bosons (H,W,Z) and quarks
- ➤ Machine design for ~100 TeV c.m. energy & int. luminosity ~ 20ab-1 in 25 years

HE-LHC:

- Doubling LHC collision energy with FCC-hh 16 T magnet technology
- c.m. energy ~ 27 TeV = 14 TeV x 16 T/8.33T, target luminosity ≥ 4 x HL-LHC
- ➤ Machine design within constraints from LHC CE and using HL-LHC and FCC techn.

FCCee Physics

working point	luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹] = design value		total luminosity (2 IPs)/ yr; half of typical luminosity assumed in 1st two years (Z) and 1st year $(t\bar{t})$		physics goal	run time [yr]				
Z first 2 years	10	00		26 ab ⁻¹ /year	150	1				
Z later	200			48 ab ⁻¹ /year	ab ⁻¹	4				
W	25			6 ab¹/year	10 ab ⁻¹	1-2				
Н	7.0			1.7 ab ⁻¹ /year	5 ab ⁻¹	3				
machine modification for RF installation & rearrangement: 1 year										
top 1st year (350 GeV)		0.8	0.2 ab ⁻¹ /year		0.2 ab-1	1 1				
top later (365 GeV)		1.4	0.34 ab ⁻¹ /year		1.5 ab-1	4				
total program duration: 15 years – incl. machine modifications										

phase 1 (Z, W, H): 9 years, phase 2 (top): 6 years Marcin Chrzaszcz (IFJ PAN) LFV and LUV at FCCee

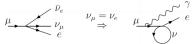
The European Strategy

In the coming decade, the LHC, including its high-luminosity upgrade, will remain the world's primary tool for exploring the high-energy frontier. Given the unique nature of the Higgs boson, there are compelling scientific arguments for a new electron-positron collider operating as a 'Higgs factory'. Such a collider would produce copious Higgs bosons in a very clean environment, would make dramatic progress in mapping the diverse interactions of the Higgs boson with other particles and would form an essential part of a research programme that includes exploration of the flavour puzzle and the neutrino sector.

High-priority future initiatives

- A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:
- the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;
- Europe, together with its international partners, should investigate the technical and financial feasibility of a tuture hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.



Lepton Flavour/Number Violation

Lepton Flavour Violation(LFV):

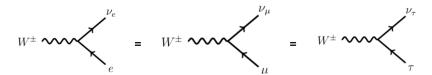
After μ^- was discovered it was natural to think of it as an excited e^- .

- Expected: $B(\mu \to e\gamma) \approx 10^{-4}$
- ullet Unless another u, in intermediate vector boson loop, cancels.

I.I.Rabi:

"Who ordered that?"

- Up to this day charged LFV is being searched for in various decay modes.
- LFV was already found in neutrino sector (oscillations).


Lepton Number Violation (LNV)

- Even with LFV, lepton number can be a conserved quantity.
- Many NP models predict it violation(Majorana neutrinos)
- Searched in so called Neutrinoless double β decays.

Lepton Universality

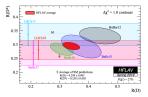
⇒ What is Lepton Universality?

Lepton Universality

⇒ What is Lepton Universality?

⇒ Or mathematically speaking:

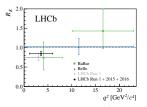
$$\mathcal{L}_f = \bar{f} i D_\mu \gamma^\mu f, \quad f = l_L^i$$


$$D_{\mu} = \partial_{\mu} + i \frac{\mathbf{g}}{2} \sigma_{j} W_{\mu}^{j}$$

⇒ Basic property of SM!

Lepton Universality Violation

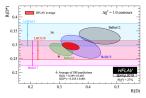
⇒ Charge currents:


$$R(D^*) = \frac{\operatorname{Br}(B \to D^* \tau \nu)}{\operatorname{Br}(B \to D^* \mu \nu)}$$

- \Rightarrow Discrepancy reduced to 3.1 σ .
- ⇒ Theoretical uncertainties are still negligible.

⇒ FC Neutral currents:

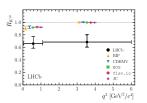
$$R_{\mathrm{K/K}^*} = rac{\mathrm{Br}(\mathrm{B}
ightarrow \mathrm{K/K}^* \mu \mu)}{\mathrm{Br}(\mathrm{B}
ightarrow \mathrm{K/K}^* ee)}$$


$$R_K = 0.846^{+0.060}_{-0.054}(\text{stat.})^{+0.016}_{-0.014}(\text{syst})$$

 $\Rightarrow 2.5 \ \sigma$ deviation from SM.

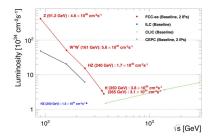
Lepton Universality Violation

⇒ Charge currents:


$$R(D^*) = \frac{\operatorname{Br}(B \to D^* \tau \nu)}{\operatorname{Br}(B \to D^* \mu \nu)}$$

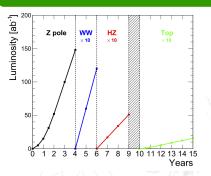
- \Rightarrow Discrepancy reduced to 3.1 σ .
- ⇒ Theoretical uncertainties are still negligible.

⇒ FC Neutral currents:


$$R_{\mathrm{K/K}^*} = rac{\mathrm{Br}(\mathrm{B}
ightarrow \mathrm{K/K}^* \mu \mu)}{\mathrm{Br}(\mathrm{B}
ightarrow \mathrm{K/K}^* ee)}$$

$$R_{\text{K}^*}^{\text{low q}^2} = 0.66_{-0.07}^{+0.11}(\text{stat.}) \pm 0.03(\text{syst})$$

$$R_{\kappa^*}^{\mathrm{mid~q}^2} = 0.69^{+0.11}_{-0.07}(\mathrm{stat.}) \pm 0.05(\mathrm{syst})$$


Expected data

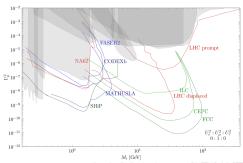
- ⇒ Huge luminosity compared to other projects.
- ⇒ Especially in the "lower" energy spectrum.

Amount of Bosons produced

- \Rightarrow Z: 5 × 10¹²
- \Rightarrow WW: 10^8
- \Rightarrow ZH: 10^6
- \Rightarrow tt: 10^6

LFV at Z

- \Rightarrow Testing anomalous couplings of the Z boson:
- $Z \rightarrow \ell \ell'$


Γ_{63}	$ u\overline{ u}\gamma\gamma$	[7] $< 3.1 \times 10^{-6}$
Γ_{64}	$e^{\pm}\mu^{\mp}$	[4] $< 7.5 \times 10^{-7}$
Γ_{65}	$e^{\pm} au^{\mp}$	[4] $< 9.8 imes 10^{-6}$
Γ_{66}	$\mu^\pm au^\mp$	[4] $< 1.2 \times 10^{-5}$
Γ_{67}	pe	$< 1.8 imes 10^{-0}$

- \Rightarrow Currently the measurements are in range $10^{-5}-10^{-6}$, dominated by LEP and ATLAS experiments.
- \Rightarrow With 5×10^{12} Z decays the FCC is expected to probe region of $\mathcal{O}(10^{-9})$.

LFV at Z, RHN

- \Rightarrow Huge amount of Z means also huge amount of neutrinos!
- ⇒ Can test the Right Handed Neutrino Model:
- $Z \rightarrow \nu_R \bar{\nu}$
- ullet $u_R
 ightarrow
 u Z^*$, $abla^*
 ightarrow
 u ar{
 u} / \ell ar{\ell} / q ar{q}$
- ullet $u_R
 ightarrow \ell extbf{W}^*$, $extbf{W}^*
 ightarrow
 u \ell / q ar q'$

 \Rightarrow Possible to probe the mass of RHN in range [0.5, 80] GeV/c² Credit to M. Drewers

LFV with heavy flavours

\Rightarrow The Z runs is also a Flavour factory:

Particle production (10 ⁹)	B^0/\overline{B}^0	$\mathrm{B^+/B^-}$	B_s^0/\overline{B}_s^0	$\Lambda_b/\overline{\Lambda}_b$	cc	τ+τ-
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	400	400	100	100	550	170

$$au o \ell \gamma$$

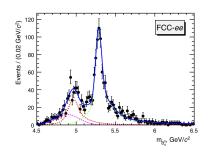
- \Rightarrow Sensitivity 2×10^{-9} .
- ⇒ Compatible with Belle II.
- ⇒ Background dominated.

$$au o \ell\ell\ell$$

- \Rightarrow Sensitivity 1×10^{-10} .
- ⇒ Factor of 2 better then Belle II.
- ⇒ Background free.

Lepton Universality with heavy flavors

- ⇒ LU is essentially a test of coupling constant of charge currents.
- \Rightarrow The easiest is to measure: $\frac{g_{\mu}}{a}$.
- \Rightarrow This can be obtained using partial width: $\tau\to\mu\nu\nu$ and $\tau\to e\nu\nu$. Known to 0.14~% precision.
- \Rightarrow The ratios $\frac{g_{\tau}}{g_e}$ and $\frac{g_{\tau}}{g_u}$ require the measurements:
- $\tau \to \mu \nu \nu$ or $\tau \to e \nu \nu$.
- $\mu \to e \nu \nu$.
- ⇒ FCCee aims to improve these measurements with an order of magnitude!!!


Lepton Universality with heavy flavors

 \Rightarrow FCCee can shade the light on the LUV anomalies.

 \Rightarrow We expect over 1000 events of $B \to K^* \tau \tau$.

 \Rightarrow Allows to measure the angular observables, but also to test LUV:

$$R_{\textit{K}^*}^{\tau/\ell} = \frac{\mathrm{Br}(\textit{B} \rightarrow \textit{K}/\textit{K}^*\tau\tau)}{\mathrm{Br}(\textit{B} \rightarrow \textit{K}/\textit{K}^*\ell\ell)}$$

- \Rightarrow Can achieve precision of 5% for $R_{\mathbf{k}^*}^{ au/\ell}.$
- ⇒ Allows to measure the LUV in angular observables.
- \Rightarrow More of the $b \to s$ transitions with τ leptons will have similar sensitivities!

Conclusions

- ⇒ FCCee after the recent European Strategy Update the FCC is progressing towards TDR.
- \Rightarrow Thanks to the Tera Z run the FCCee is electroweak and flavor factory.
- \Rightarrow Measurements of LFV and LUV parameters will complement other B-factories ($b \rightarrow s$ transitions), and in most cases be the most precise measurements to date.
- ⇒ Check out the FCC:

 \Rightarrow Visit our web page and sign up for updates:

https://fcc-ee.web.cern.ch/

Referneces

- ⇒ FCC Physics Opportunities, CERN-ACC-2018-0056
- ⇒ FCC-ee: The Lepton Collide, CERN-ACC-2018-0057
- ⇒ And others: 1906.02693, 1809.01830. 1506.00918

Backup

