

A Charged-Current v_{μ} Veto for the Inclusive v_{e} Analysis in MicroBooNE

Erin Yandel University of California - Santa Barbara

> New Perspectives August 25, 2020

MicroBooNE

- MicroBooNE is a surface-level neutrino experiment based at Fermilab that utilizes a LArTPC
- Collecting data since October 2015
- Primary goal is to understand the low energy excess seen by MiniBooNE through conducting an inclusive v_e analysis
- See Lauren Yates's July 21 New Perspectives talk <u>"Five Years of</u> <u>MicroBooNE and Beyond in Ten Minutes"</u> for more details

Cosmic Removal

- With a surface-level detector like MicroBooNE, cosmic rays are a major background
- Before event selection, Wire-Cell Cosmic Rejection (<u>MICROBOONE-NOTE-1084-PUB</u>) are used to remove 98.6% of cosmic events
- Raises *v*:Cosmic ratio to 7.6:1 (from 10,000:1 at raw data level)
- Muon Neutrino in a 3cm Fiducial Volume (v_{μ} -CC-in-FV) Efficiency: 81%

Use to remove v_{μ} CC events for v_{e} selection, want high v_{μ} CC efficiency and low v_{e} mis-ID

Use to remove v_{μ} CC events for v_{e} selection, want high v_{μ} CC efficiency and low v_{e} mis-ID

Strategy: identify a muon track associated with neutrino vertex

1. reconstructed neutrino vertex is inside the TPC

Use to remove v_{μ} CC events for v_{e} selection, want high v_{μ} CC efficiency and low v_{e} mis-ID

- 1. reconstructed neutrino vertex is inside the TPC
- 2. At least one track associated with reconstructed neutrino vertex

Use to remove v_{μ} CC events for v_{e} selection, want high v_{μ} CC efficiency and low v_{e} mis-ID

- 1. reconstructed neutrino vertex is inside the TPC
- 2. At least one track associated with reconstructed neutrino vertex
- 3. At least one of these tracks has log likelihood ratios consistent with a muon
 - a. Muon/Proton
 - b. Muon/Proton for tracks exiting the TPC
 - c. Muon/Pion

Use to remove v_{μ} CC events for v_{e} selection, want high v_{μ} CC efficiency and low v_{e} mis-ID

- 1. reconstructed neutrino vertex is inside the TPC
- 2. At least one track associated with reconstructed neutrino vertex
- 3. At least one of these tracks has log likelihood ratios consistent with a muon
 - a. Muon/Proton
 - b. Muon/Proton for tracks exiting the TPC
 - c. Muon/Pion
- 4. "Track-like" (*µ*-like) vs "Shower-like" (electron-like) events

Log Likelihood Ratios: Muon/Proton

Input: Track Length (A), Track Straightness Score (B), Track PID (using energy loss along the trajectory) (C) $R_{Likelihood} =$

EXT = beam-off (cosmics only) data Dirt = v interaction outside the TPC

Log Likelihood Ratios: Muon/Proton

Efficiency: 84% MisID: 24% Main mode of misID: charged pion selected as muon

Two large bins from corrections for Prob(muon)=0 or Prob(proton)=0 - avoid divide by 0 or log(0) errors

13

Log Likelihood Ratios: Muon/Pion

Input: Track Length, Track Straightness Score, Number of Vertices, Number of Particles from Re-interaction (3rd Generation Particles) Reduce MisID by 3%

Lose 2% Efficiency

Non-Contained Muon/Proton Log Likelihood Ratio

- Track length no longer used as input
- Only for tracks exiting the TPC
- Recover 3% efficiency particularly at low (200-400 MeV) energies

Before

After

Performance

- v_{μ} CC Efficiency: 82.4%
- v_e^{-} CC MisID: 10.4%
- v_{μ} : v_{e} = 27 : 1 (from 200:1 at raw data level)

v_{μ} CC Selection

Use as a constraint to reduce systematic error in $v_{\rm e}$ selection, want high v_{μ} CC Efficiency and high v_{μ} CC Purity

Strategy: same as filter but focus on optimizing purity instead of misID

• Further cosmic removal using more strict Wire-Cell cosmic tagger

18

- Use a smaller fiducial volume to define "inside the TPC" to minimize dirt and cosmics
- Cut values of likelihood ratio functions changed from filter

Numu CC Passed Events v_{μ} in FV v NC in FV **MicroBooNE** v_e in FV Preliminary nu not in FV cosmic EXT dirt 89.6 % 78% Efficiency 90% Purity

v_{μ} CC Constraint

High statistics v_{μ} sample can be used to constrain many of the uncertainties associated with the v_{e} events

Work on constraint using this inclusive v_{μ} selection for the inclusive v_{e} analysis is in-progress

Without numu event constraint

Example of constraint using a toy model:

With numu event constraint

Mike Shaevitz (docdb-7583)

Summary

Developed for MicroBooNE Low Energy Excess Analysis:

- v_{μ} CC filter
 - 82.4% efficiency and 10.4% v_{a} misID Ο
 - help veto large v_{μ} CC background for inclusive v_{e} analysis
- v_{μ} CC selection
 - 78% efficiency and 90% purity 0
 - use as a constraint sample for inclusive v_{a} analysis Ο
- For more details check out the public note: MICROBOONE-NOTE-1088-PUB

Thank You!

Science

Backup

PID

Using Calorimetry-Likelihood PID

- Uses the profile of the deposited charge per unit length: dE/dx
- the average dE/dx at a given residual range (the distance from the end of the track to the given point) depends on the particle's mass, and can therefore be used to distinguish particles
- dE/dx information for one plane is used to determine a particle-type likelihood for each track
- The three planes are combined by multiplying their likelihoods

Performance: With v_e Selection

events $\chi^2/\text{ndf} = 30.7 / 20$ ---- data (121.6) 50 EXT (0.0) dirt (0.0) cosmic (1.1) out of FV (4.0) CC (33.2) 40 CC a. (14.7) NC (7.4) π. (14.2) CC 0πNp (18.3) CC 0x0p (3.7) 30 CC other (4.4) 20 10 1.5 0. 0. 0.: 200 400 600 800 1000 1200 1400 1600 1800 200 0 Evis [MeV]

Without v_{μ} CC Filter

With v_{μ} CC Filter

 v_{μ} CC : v_{e} CC = 0.9 : 1

$$v_{\mu}$$
CC : v_{e} CC = 1.8 : 1

v_{μ} CC Constraint

- $v_{\rm e}$ statistics very low
 - Even if analysis selection was 100% would only have about 100 v_{e} events in 5e19 POT
 - Errors can easily become unmanageable
- v_{μ} is a much higher statistic sample
 - This selection sees almost 8500 v_{μ} events in 5e19 POT