Systematic Study of Spectrometer-Induced Azimuthal Asymmetries for SpinQuest

Forhad Hossain
with
Stephen Pate, Vassili Papavassiliou, and Abinash Pun
On behalf of the SpinQuest Collaboration

FERMILAB-SLIDES-20-103-E

Outline

1. Transverse Single-Spin Asymmetry.
2. Sivers Effect in the Nucleon.
3. Sea-quark Sivers Asymmetry from Polarized Drell-Yan.
4. Extracting the Spectrometer-Induced Azimuthal Asymmetry.
5. Summary and Conclusions.

Transverse Single-Spin Asymmetry

Sivers Effect in the Nucleon

Reasons for the Asymmetry

Phys. Rev. D 70, 117504 (2004)
The number density of unpolarized quarks in a transversely polarized proton:

$$
\begin{aligned}
& \qquad f_{q / p^{\uparrow}}\left(x, \vec{k}_{T}\right)=f_{1}^{q}\left(x, k_{T}^{2}\right)-f_{1 T}^{\perp q}\left(x, k_{T}^{2} \frac{\left(\vec{k}_{T} \times \vec{S}\right) \cdot \vec{P}}{m_{p}}\right. \\
& \text { Dennis Sivers, Phys. Rev. D 41, } 83 \text { (1990) }
\end{aligned}
$$

The \vec{k}_{T} distribution of quarks in a transversely polarized
Gives correlation between \vec{k}_{T} and \vec{S} proton can be asymmetric and known as Sivers effect.

Sivers Effect: Intrinsic k_{T} imbalance leads to the asymmetry
$\mathrm{f}_{1}^{\mathrm{q}}=$ Unpolarized quark density.
$f_{1 T}^{\perp q}\left(x, k_{T}^{2}\right)=$ Sivers function.
$x=$ Bjorken variable.
$\vec{S}=$ Spin polarization vector.
$\vec{P}=$ Three momentum of the proton.
$\vec{k}_{T}=$ Intrinsic transverse momentum of unpolarized quarks.

Bacchetta \& Contalbrigo, The proton in 3D
II Nuovo Saggiatore 28 (12) n.1,2

Sea-quark Sivers Asymmetry from Polarized Drell-Yan

Fig: Proton parton distribution functions plotted as functions of Bjorken x

$$
\frac{d^{2} \sigma}{d x_{b} d x_{t}}=\frac{4 \pi \alpha^{2}}{9 x_{b} x_{t}} \frac{1}{S} \sum_{q} e_{q}^{2}\left(q_{b}\left(x_{b}\right) \bar{q}_{t}\left(x_{t}\right)+q_{t}\left(x_{t}\right) \bar{q}_{b}\left(x_{b}\right)\right)
$$

1. For SpinQuest $x_{b}>x_{t}$
2. Kinematic acceptance plot in next slide 5

Sea-quark Sivers Asymmetry from Polarized Drell-Yan

SpinQuest Apparatus

The kinematic acceptance of the SpinQuest experiment. $\left(x_{b}>x_{t}\right)$

Transversely Polarized NH_{3} or ND_{3}.

120 GeV proton

1. Tracking : Abinash Pun
2. FPGA Trigger: MinJung Kim
3. Polarization: Zulkaida Akbar

SeaQuest Dimuon Spectrometer
4. Dilution Factor: Anchit Arora

Sea-quark Sivers Asymmetry from Polarized Drell-Yan

The Drell-Yan Cross Section in Terms of Sivers Asymmetry:

$$
\begin{aligned}
& \sigma_{D Y}^{\uparrow \downarrow}=\frac{d \sigma^{L O}}{d^{4} q d \phi_{S}} \propto 1 \pm\left|\mathrm{S}_{\mathrm{T}}\right| \sin \phi_{S} A_{T}^{\sin \phi_{S}} \\
& A\left(\phi_{S}\right)=\frac{1}{\left|S_{T}\right|} \frac{\sigma_{D Y}^{\uparrow}-\sigma_{D Y}^{\downarrow}}{\sigma_{D Y}^{\top}+\sigma_{D Y}^{\downarrow}}=\sin \phi_{S} A_{T}^{\sin \phi_{S}}
\end{aligned}
$$

Phys. Rev. D 79, 034005 (2009),
PRL 119, 112002 (2017)

$\vec{S}_{T}=$ Target spin vector
$\widehat{x}, \widehat{y}, \widehat{z}$, is target rest frame $=\mathrm{TF} ; \hat{x}=\hat{q}_{T}, \hat{y}=\hat{z} \times \hat{q}_{T}$
$\hat{x}^{\prime}, \hat{y}^{\prime}, \hat{z}^{\prime}$ is detector rest frame $=\mathrm{DF}$
$\vec{q}_{T}=$ Dimuon's transverse momentum
$\vec{k}_{T}=$ Quark's transverse momentum

1. $\sigma_{D Y}^{\uparrow \downarrow}$ is the Drell-Yan cross section and $A_{T}^{\sin \phi_{S}}$ is the Sivers asymmetry .
2. Azimuthal angle ϕ_{S} in TF and ϕ in DF can be written as $\phi_{S}^{\uparrow \downarrow}=\left(\pm \frac{\pi}{2}-\phi\right)$.

Extracting the Spectrometer-Induced Azimuthal Asymmetry

Motivation for the Spectrometer-Induced Asymmetry Systematic Check

1. The efficiency of the detectors could be changing over time (e.g. the phototubes might suffer a decrease in gain).
2. The numbers of protons hitting the polarized target will not be the same in each spill, and the detector performance could change due to luminosity fluctuations.
\rightarrow In either case, it is possible for one target spin state to collect a higher yield than the other, producing a false asymmetry. We will check the size of such effects, by using the SeaQuest experiment dataset.

Extracting the Spectrometer-Induced Azimuthal Asymmetry

Dimuon Yield $\left(N_{\uparrow \downarrow}\right)$ and Fake Spin Assignment in SeaQuest Data

$$
N_{\uparrow \downarrow}(\phi)=L_{\uparrow \downarrow}^{i n t} \Omega \epsilon_{\mathrm{T}} \sigma\left[1 \pm S_{T} A(\phi)\right]
$$

Beginning of the Spin flipping

End of the Spin flipping

1. σ is the unpolarized interaction cross section.
2. Ω is the overall acceptance of the spectrometer.
3. $L_{\uparrow \downarrow}^{i n t}$ is the integrated number of protons hitting the target $L H_{2}$ when DAQ is live.
4. S_{T} is the transverse polarization. We have assumed 1 for the (fake) spin flipping case.
5. ϵ_{T} overall efficiency of the measurement.
6. $A(\phi)$ can have the form of the detector false asymmetry or physics asymmetry Sivers.

Extracting the Spectrometer-Induced Azimuthal Asymmetry
 Flipping Spin Every Hour

1. Standard SeaQuest selections was used where the dimuon mass was $\mathbf{4 . 2} \mathbf{G e V}$ or more.
2. Total protons on LH_{2} target is $\mathbf{1 . 5} \times \mathbf{1 0}^{\mathbf{1 7}}$ and total DAQ runs are analyzed is about $\sim \mathbf{3 0 0 0}$.
3. Each run is about one hour and only LH_{2} target was used from the runs.
4. The fitting function $\operatorname{par}[\mathbf{0}]+\operatorname{par}[\mathbf{1}] * \boldsymbol{\operatorname { c o s }} \boldsymbol{\phi}$ is used with least-squares method.
5. The asymmetry $\operatorname{Par}[1]=-0.0002 \pm 0.0090$
6. From the results we do not see any false spectrometer generated asymmetry produced.

Extracting the Spectrometer-Induced Azimuthal Asymmetry

Flipping Spin Every 12 Hours (Day/Night, a Worst-Case Scenario)

1. Standard SeaQuest selections was used where the dimuon mass was 4.2 GeV or more.
2. Total protons on LH_{2} target is 1.5×10^{17} and total DAQ runs are analyzed is about ~ 3000.
3. Each run is about one hour and only LH_{2} target was used from the runs.
4. The fitting function $\operatorname{par}[0]+\operatorname{par}[1] * \cos \phi$ is used with least-squares method.
5. The asymmetry $\operatorname{Par}[1]=-0.007 \pm 0.009$
6. From the results we do not see any false spectrometer generated asymmetry produced.

Extracting the Spectrometer-Induced Azimuthal Asymmetry

Flipping Spin Every 50 Hour (a Reasonable Scenario)

1. Standard SeaQuest selections was used where the dimuon mass was 4.2 GeV or more.
2. Total protons on LH_{2} target is 1.5×10^{17} and total DAQ runs are analyzed is about ~ 3000.
3. Each run is about one hour and only LH_{2} target was used from the runs.
4. The fitting function $\operatorname{par}[0]+\operatorname{par}[1] * \cos \phi$ is used with least-squares method.
5. The asymmetry $\operatorname{Par}[1]=-0.001 \pm 0.009$
6. From the results we do not see any false spectrometer generated asymmetry produced.

Summary and Conclusions

- We have done a systematic study of measuring the fake azimuthal asymmetries that could be introduced due to the spectrometer.
- We have found that the detector did not generate a false azimuthal asymmetry that could imitate the physics Sivers asymmetry.

Thanks to all SeaQuest collaborators, especially Kenichi Nakano and Andrew Chen for all the suggestions and comments in the study.

Thanks For Listening \& Welcome to Join the SpinQuest Collaborations

Back Up Slides

Sivers Effect in the Nucleon

Quarks Distributions in Impact Parameter Space

A transversely polarized proton deformation is described by the gradient of the Fourier transform of $E_{q}\left(x, \xi=0,-\Delta_{\perp}^{2}\right)$.
M. Burkardt, Few-Body Syst 52, 265-270 (2012)

$$
q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H^{q}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}}-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} E^{q}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}
$$

$d_{y}^{q} \equiv \int d^{2} b_{\perp} q\left(x, b_{\perp}\right) b_{y}=\frac{\boldsymbol{k}_{q}}{2 M} \quad ;$ Positive (negative) drift for the up (down) quark
M. Burkardt, Int.J.Mod.Phys.A 18 (2003) 173-208

Anomalous magnetic moments of the quarks [considering the u and d quarks only]

- $\kappa_{p}=\frac{2}{3} \kappa_{u}-\frac{1}{3} \kappa_{d}=1.79$
- $\kappa_{n}=\frac{2}{3} \kappa_{d}-\frac{1}{3} \kappa_{u}=-1.91$
- $\kappa_{u}=1.673 ; \quad \kappa_{d}=-2.033$

IMF Frame

The reason u and d quarks are drifting in opposite directions is due to the anomalous magnetic moment of the quarks to the proton.

Time Dependent Spectrometer-Induced Asymmetry

1. Each segment consists of range of 100 DAQ runs. If any runs are missing in any segment, we will have less than 100 runs in that case.
2. Polynomial fit pol0 to the $F=\frac{\mathrm{N}_{\uparrow}}{\mathrm{N}_{\downarrow}} \times \frac{\mathrm{L}_{\downarrow}}{\mathrm{L}_{\uparrow}}$ is consistent with 1 , and we also have 0 asymmetry with time.

Sea-quark Sivers asymmetry from polarized Drell-Yan

What is the Drell-Yan Process?

Sidney D. Drell and Tung-Mow Yan Phys. Rev. Lett. 25, 902 (1970)

Drell Yan Cross Section Formula \& Azimuthal Asymmetry

The leading order transversely single DrellYan cross section in QCD parton model:

$$
\frac{d \sigma^{L O}}{d^{4} q d \Omega} \propto \widehat{\sigma}\left\{\begin{array}{l}
1+D_{\sin ^{2} \theta \cos \left(2 \phi_{C S}\right) A_{U}^{2 \phi_{C S}}}+\left\{\begin{array}{l}
\sin \phi_{S} A_{T}^{\sin \phi_{S}} \\
+\sin \left(2 \phi_{C S}+\phi_{S}\right) A_{T}^{\sin \left(2 \phi_{C S}+\phi_{S}\right)} \\
+\sin \left(2 \phi_{C S}+\phi_{S}\right) A_{T}^{\sin \left(2 \phi_{C S}+\phi_{S}\right)}
\end{array}\right\}
\end{array}\right\}
$$

Sea-quark Sivers Asymmetry from Polarized Drell-Yan

How all the particles inside the proton give it a $1 / 2$ spin?

1. Quarks spin accounts for about 25% of the proton's spin.
2. From recent study of RHIC, it is still disputed that the sum of both quark and gluon spin contributions make up the total proton spin.
3. Lattice QCD indicates that $\mathbf{\sim 5 0} \%$ comes from the quark's orbital angular momentum.
4. Hence, orbital angular momentum of sea quarks could play major role in proton Sb_{2} in. Hints of sea quark O.A.M.

Sea-quark Sivers Asymmetry from Polarized Drell-Yan

Anticipated Results from SpinQuest

$$
\text { If } A_{\text {Siv }} \neq 0
$$

1. If the Sivers asymmetry $A_{S I v} \neq 0$, we will find a strong evidence that orbital momentum of sea quarks are not zero.
2. We will determine the Sivers function as well.

$$
\text { If } A_{S i v}=0
$$

Flavor asymmetry of sea quarks would be more difficult to understand.

DGLAP: M. Anselmino et al arXiv:1612.06413
TMD-1: M. G. Echevarria et al arXiv:1401.5078
TMD-2: P. Sun and F. Yuan arXiv:1308.5003
The anticipated uncertainties in the SpinQuest experiment are based on combined running on $N H_{3}$ and $N D_{3}$ targets.

