SpinQuest/E1039 FPGA Trigger

Minjung Kim University of Michigan On behalf of SpinQuest collaboration

SpinQuest/E1039 experiment

- To extract Sivers function of ubar & dbar in a nucleon through DY decayed dimuon asymmetry measurement
- Dimuon detection by 4 stations of tracker & hodoscope scintillators and hadron absorber
- Requires a trigger to select DY dimuon under high fraction & rate of background in total muon flux (due to interaction with beam dump, rareness of DY process): designed to select oppositelycharged muon pairs at 4-9 GeV mass range

FPGA trigger principle

Top (16 channels) Bottom (16 channels)

> Scintillation hodoscope arrays for X (horizontal) - position at station 3

- Consist of scintillator hodoscope + FPGA based VMEbus modules
- Get **X-position of muon** from arrays of vertical **scintillators**
- Compare hit patterns of 4 stations of hodoscopes with predefined hit patterns (DY dimuon "roads") obtained from Monte Carlo simulation to generate trigger decisions
- These roads form a tiered Look-up-table in the FPGA

Visualized hit patterns (roads) of positive muons from E906/ SeaQuest MC simulation study Black dots: scintillator paddles viewed from the top Red (blue) lines: the 10 most (the next 10 most) frequent roads

Trigger board - CAEN V1495

- VMEbus module, contains user programmable FPGA with 20,060 logic elements (<1000 pre-defined roads per board)
- Takes up to 96 channels of inputs (16 channels x 4 stations = total 72 channels of hodoscope input for each top/ bottom board)
- Total 5 boards consists FPGA trigger system

Trigger hierarchy

LvI. A

- Forward raw hit patterns to LvI. B
- Test & diagnosis Input can be switched to internal registers that hold pre-defined hit patterns and send them to LvI. B

LvI. B

 Tiered LUT compares hodoscope hit patterns with a set of single muon roads, then sends charge & pX bit to IvI. C

LvI. C

 LUT compare +/- & Top/Bottom combination and send corresponding trigger bit to DAQ LvI B "AND" operation for each road (ch st1 <u>&</u> ch st2 <u>&</u> ch st3 <u>&</u> ch st4) Then "OR" operation for all roads (road1 <u>or</u> road2 <u>or</u> ...)

LvI C [Top mu+ & Bottom mu-] <u>or</u> [Top mu- & Bottom mu+]

Main physics trigger: TB/BT & +-/-+ (DY mu+/mu-)

Combinatorial background trigger: TB/BT & ++/- (same charge) T/B & +/- (single track)

FPGA trigger block diagram

SpinQuest trigger status

- Took over decommissioned e906 trigger in 2019
- Tested trigger functionality at test bench setup
- Integrated to DAQ and tested with cosmic data
- TDC pipeline delay adjusted with cosmic muon & pulser generator
- Simulation study is ongoing to optimize Look Up Table

TDC delay adjustment

Look up table study

- Background in E906 setup: scattering at beam dump, combinatorial muons decayed from pions
 - E906 setup didn't have enough vertex resolution to separate target and beam dump. Therefore, E1039 target was moved ~3 m upstream.
 - Pions have low pT, seem to come from soft processes. From naive guess, adding y-hodoscope information can reduce such coincidence background.
- To improve trigger performance by adding y-hodoscope information to LUT, simulation study is ongoing to estimate efficiency and purity. Expected to be done by the end of 2020.

Summary

- SpinQuest FPGA trigger is designed to select DY dimuon events at high background rate.
- The trigger decision is made based on hodoscope hit pattern compared with pre-defined hit patterns obtained from MC simulation (dimuon roads).
- Simulation study is ongoing to suppress high combinatorial background events efficiently.
- FPGA trigger expected to be ready for production data by end of 2020.

Thank you

Back up

FPGA trigger block diagram

Pulser generator setup

Difficult to tune timing with cosmic ray due to high background that hits partial hodoscope stations Emulate real muon signal timing using pulser generator

FPGA & NIM trigger timing

- Both trigger signals generated by cosmic ray after FPGA trigger is timed, measured at immediate upstream of Trigger Supervisor
- ~500 ns expected from FPGA delay due to trigger matrix (8+8+5 flip-flops @ 40 MHz)