Constraining the NC π^{0} Background for MicroBooNE's Single Photon Search

Andrew J. Mogan

On behalf of the MicroBooNE Collaboration 8/25/20
THE UNIVERSITY OF

The MicroBooNE Experiment

- 170-ton (89 ton active volume) Liquid Argon Time Projection Chamber (LArTPC)
- Operating along Fermilab’s Booster Neutrino Beam (BNB) since 2015
- Primary goal: investigation of the MiniBooNE Low-Energy Excess (LEE)

MiniBooNE Low-Energy Excess

- Observed excess of electron neutrino-like events below 600 MeV
- Cherenkov detector; difficulty distinguishing photons and electrons
- Photon-like and electron-like hypotheses
- MicroBooNE is searching for $\Delta \rightarrow \mathbf{N} \boldsymbol{\gamma}$ to investigate photon-like hypothesis
- See K. Sutton's talk from NP 1.0

Neutral Current (NC) π^{0}

- NC π^{0} s comprise $\mathbf{\sim 8 0 \%}$ of backgrounds for the NC Δ radiative decay search
- $\Delta \rightarrow \mathrm{N} \gamma$ branching ratio: $\sim 0.6 \%$
- $\Delta \rightarrow \mathrm{N} \pi^{0}$ branching ratio: $\sim 99.4 \%$
- NC π^{0} events in which only one photon is reconstructed look nearly identical to radiative decays
- Plan: use single-photon framework to select NC π^{0} events for data-driven rate constraint
$\mu \mathrm{BoonL}$
$\Delta \rightarrow \mathbf{N} \pi^{0}$ Candidáate

27 cm
$\Delta \rightarrow \mathbf{N} \gamma$ Candidate
is
$2, \operatorname{sen}$

Analysis Flow

1. Select Signal Topology

- Start with reconstructed tracks and showers [1]
- Select events with two shower (2γ) and either one or zero tracks (1 p or 0p)

2. Reject Backgrounds

- Use tailored Boosted Decision Tree (BDT) [2] trained on background events
- Reject backgrounds by cutting on BDT response

3. High-Stats NC π^{0} Selection

- Result is the world's highest-stats NC π^{0} selection on Argon
- Constrain
single-photon NC π^{0} background
[1] Acciarri, R. et. al. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector. The European Physical Journal C, 78(1), 1-25.
[2] Chen, T., He, T., Benesty, M., Khotilovich, V., \& Tang, Y. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1-4.

Signal Topology

Pre-Selection Distributions

- Before BDTs, apply some conservative pre-selection cuts
- Shower energies, conversion distance, etc.
- Signal (red) dominated by off-beam (green) and on-beam backgrounds (blue and brown)

(Data/MC: 0.94) (KS: 0.976) ($x^{2} /$ nDOF: 25.97/34) ($x^{2} P^{\text {val }}: 0.836$)

(Data/MC: 0.94) (KS: 1.000) ($\chi^{2} /$ nDOF: 22.06/34) $\quad\left(\chi^{2} P^{\text {val }}: 0.943\right.$)

BDT Training

- Train BDT on various kinematic and calorimetric variables in simulation
- Training variables chosen based on separation power between signal and background
- Example: track dE/dx (left)
- dE/dx: energy deposition per unit length
- Separates events with proton-like track for 2 g 1 p selection
- Peak at $2 \mathrm{MeV} / \mathrm{cm}$ mostly from minimally-ionizing muon tracks

BDT Response

- Cut on BDT response to maximize efficiency times purity in the final selection

Background-like Signal-like
Background-like Signal-like

$2 \gamma 1 p$ Final Selection

- $\sim 20 \%$ normalization difference between data and MC
- Covered by systematic uncertainties
- Gaussian fit to mass peak gives a mean of $137.6 \pm 2.1 \mathrm{MeV}$ and a width of $44.1 \pm 1.8 \mathrm{MeV}$

$2 \gamma 0 p$ Final Selection

- Normalization difference $<10 \%$
- Gaussian fit to mass peak gives a mean of $140.2 \pm 2.8 \mathrm{MeV}$ and a width of $49.9 \pm 2.7 \mathrm{MeV}$

- Demonstrated world's highest-stats NC π^{0} selection on Argon
- Still more data to process!
- Constraint provides $\sim 3 \mathrm{x}$ reduction in single-photon systematics
- See talk by G. Yarbrough

Backup

Pre-Selection Cuts

- 2 g 1 p pre-selection cuts:
- 5 cm fiducial volume on vertex
- Both shower conversion distances $>1 \mathrm{~cm}$
- Leading shower energy > 30 MeV
- Subleading shower energy > 20 MeV
- Distance from track start point to vertex $<10 \mathrm{~cm}$
- 2 g 0 p pre-selection cuts:
- 5 cm fiducial volume on vertex
- Leading shower energy > 30 MeV
- Subleading shower energy > 20 MeV

Training Variables

- 2 g 1 p Training variables:
- Both shower conversion distances
- Both shower impact parameters
- Track length
- Track θ
- Distance from track end point to nearest TPC wall
- Track mean truncated dE/dx (shown here)
- Ratio of track start/end dE/dx
- 2g0p Training variables:
- Both shower conversion distances
- Both shower impact parameters
- Both shower energies
- Both ratios of shower length/energy
- Leading shower θ_{yz}
- Pandora neutrino slice score

BNB Backgrounds in Final Selection

Background	Percentage
π^{0} Charge Exchange	11.9
CC Multi- π^{0}	5.3
CC Other	14.7
NC Other	6.3
η	18.8
Overlay	28.3
Other	14.8

- Percentages relative to BNB Other, which comprise $\sim 10 \%$ of final selection
- Single largest component is cosmic contamination
- Other large backgrounds include general CC events, η ' s, and "other"

CC π^{0} Backgrounds in Final Selection

Background	Percentage
Proton track	49.6
Muon track	11.5
Shower Mis-ID	31.4
Overlay	2.2
Other	5.4

- Percentages relative to CC π^{0}, which comprise $\sim 10 \%$ of final selection
- Most have track matched to proton, not muon
- Muon tracks sometimes not reconstructed
- Looks exactly like signal

2g1p Signal Composition

Generated NC π^{0}

	Resonant	DIS	QE	Coherent	MEC
Run 1	77.2%	19.7%	0.82%	2.2%	0.04%
Run 3	77.7%	19.3%	0.80%	2.2%	0.04%

Signal NC π^{0}

	Resonant	DIS	QE	Coherent	MEC
Run 1	84.6%	13.5%	1.3%	0.41%	0.09%
Run 3	84.8%	13.9%	0.97%	0.29%	0.10%

Center-of-Mass Decay Angle

Lab Frame CM Frame

