Parameterization and applications of the low- Q^2 nucleon vector form factors New Perspectives 2020 (2.0), Fermilab

Kaushik Borah

with R. J. Hill, G. Lee, O. Tomalak arXiv:2003.13640 (PRD, to appear)

University of Kentucky

August 24, 2020

Goal of the talk

- ▶ We present the proton and neutron vector form factors, uncertainties and correlations in a convenient parametric form that is model independent and optimized for $Q^2 \leq \text{few GeV}^2$.
- The form factors are determined from a global fit to electron scattering data and precise charge radii measurements.
- Including high-precision data of A1@MAMI, charged current quasielastic cross sections change by 3-5 %
- Motivation for new measurement of the proton magnetic form factor

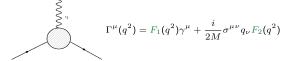
Outline

Theory

Review of Form Factors The *z* Expansion Method

Application

Neutrino-nucleon scattering Influence on Cross Sections Atomic Spectroscopy


Conclusion

Nucleon Form Factors in Scattering

The nucleon electromagnetic current is expressed in terms of Dirac (F1) and Pauli (F2) form factors,

 \blacktriangleright F_1 and F_2 can be written in terms of Sachs electric and magnetic form factors G_E and G_M ,

$$F_1 = \frac{G_E + \tau G_M}{1 + \tau}, \quad F_2 = \frac{G_E - G_M}{1 + \tau}, \quad \tau = -\frac{q^2}{4M}$$

The scattering cross-section of a relativistic electron off a recoiling point-like nucleus is given by the *Mott* formula

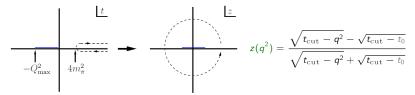
$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm Mott} = \frac{Z^2 \alpha^2}{4E^2 \sin^4 \frac{\theta}{2}} \cos^2 \frac{\theta}{2} \frac{E'}{E}$$

Structure-dependent part is expressed in terms of Sachs electric and magnetic form factors which is given by the Rosenbluth formula

$$rac{d\sigma}{d\Omega} = \left(rac{d\sigma}{d\Omega}
ight)_{
m Mott} rac{1}{1+ au} iggl\{ G_E^2 + rac{ au}{\epsilon} G_M^2 iggr\}, \quad rac{1}{\epsilon} = 1 + 2(2+ au) \tan^2 rac{ heta}{2}$$

The form factors are defined from the matrix element of one-photon exchange.

To extract them with a percent precision or better, standard QED radiative corrections and modern calculations of structure-dependent two-photon exchange are included.


$$d\sigma_{\rm expt} = d\sigma_{\rm Born} (1 + \delta_{\rm RC})$$

▲ □ ▶ ▲ 图 ▶ ▲ 토 ▶ ▲ 토 ▶ 토 · ⑦ ९ ○ Kaushik Borah August 24, 2020 4/11

The Bounded z Expansion and Sum Rule

According to QCD constraint, nucleon form factors must be analytic in $t \equiv q^2 \equiv -Q^2$ outside of a time-like cut starting at $t_{\rm cut} = 4m_{\pi}^2$, the two-pion production threshold $(t_{\rm cut} = 9m_{\pi}^2$ for isoscalar combinations). [HiII & Paz (2010)]

A conformal map gives a small expansion variable t₀ in kinematic region of scattering experiments that lies on the negative real axis. It is represented by the blue line for a set of data with maximum momentum transfer Q²_{max}.

$$G_E = \sum_{k=0}^{k_{\text{max}}} a_k [z(q^2)]^k, \quad G_M = \sum_{k=0}^{k_{\text{max}}} b_k [z(q^2)]^k$$

▶ Perturbative QCD requires that the form factors fall off faster than $1/Q^3$ in the large Q^2 limit \longrightarrow four sum rules [Lee, Arrington, Hill (2015)]

$$\sum_{k=n}^{k_{\max}} k(k-1) \dots (k-n+1)a_k = 0, \quad n = 0, 1, 2, 3.$$

We choose $k_{\max} = 8$ and estimate fitting uncertainty as a difference to $k_{\max} \rightarrow k_{\max} + 1$. Four parameters (e.g., a_1 , a_2 , a_3 , a_4) are determined by fitting to data.

KENTUCKY

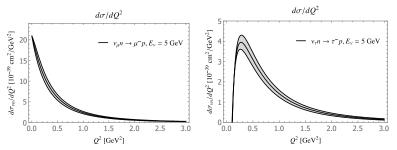
νN CCQE Cross Section

 Neutrino-nucleon charged-current quasielastic cross section is expressed in terms of form factors as [Llewellyn-Smith (1972)]

$$\frac{d\sigma}{dQ^2}(Q^2, E_{\nu}) = \frac{G_F^2 |V_{ud}|^2}{8\pi} \frac{M^2}{E_{\nu}^2} \left[A(q^2) \frac{m_l^2 - q^2}{M^2} - B(q^2) \frac{s - u}{M^2} + C(q^2) \left(\frac{s - u}{M^2}\right)^2 \right]$$

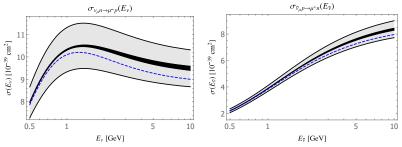
▶ The parameters A, B and C depend on the nucleon isovector form factors $F_{1,2}^V = F_{1,2}^p - F_{1,2}^n$, axial form factor F_A and pseudoscalar form factor F_P

$$A = 2\tau (F_1^V + F_2^V)^2 - (1+\tau) \left\{ (F_1^V)^2 + \tau (F_2^V)^2 - (F_A)^2 \right\} -r_l^2 \left\{ (F_1^V + F_2^V)^2 + (F_A + 2F_P)^2 - 4(1+\tau)F_P^2 \right\} B = 4\tau F_A (F_1^V + F_2^V) \quad C = \frac{1}{4} \left\{ (F_1^V)^2 + \tau (F_2^V)^2 + (F_A)^2 \right\}$$


- From PCAC, $F_P = \frac{2M^2}{m_{\pi}^2 + Q^2} F_A$
- G_F is Fermi constant
- V_{ud} is a CKM matrix element
- $M = \frac{M_p + M_n}{2}$ is the average nucleon mass
- *m_l* is the final-state lepton mass
- \blacktriangleright E_{ν} is the incoming neutrino energy

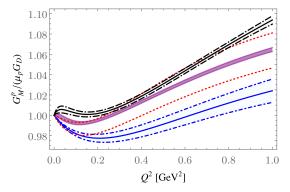
•
$$s - u = 4E_{\nu}M - Q^2 - m_l^2$$
, $r_l = \frac{m_l}{2M}$

Relevant kinematics for DUNE and HYPER-K


- ▶ Electron and muon neutrino cross sections are sensitive to $Q^2 \lesssim 1 \text{ GeV}^2$ while tau neutrino requires larger Q^2 .
- \blacktriangleright Two isospin-decomposed fits with data below $Q^2 < 1~{\rm GeV}^2$ and $Q^2 < 3~{\rm GeV}^2$ are performed.

νN CCQE Cross Section Results

 $\blacktriangleright\,$ iso 1: A1@MAMI and neutron data, $Q^2 < 1~{\rm GeV}^2;$ iso 3: all data, $Q^2 < 3~{\rm GeV}^2$

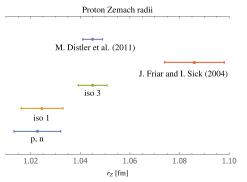

$E_{ u}=1~{ m GeV}$	$\sigma_{\nu_{\mu}n \to \mu^{-}p} \ [10^{-39} \mathrm{cm}^2]$	$\sigma_{\bar{\nu}_{\mu}p \to \mu^{+}n} \left[10^{-39} \mathrm{cm}^{2}\right]$
p, n	$10.312(987)_A(11)_p(22)_n(5)_t$	$3.886(220)_A(5)_p(8)_n(3)_t$
iso 1	$10.319(988)_A(24)_V(6)_t$	$3.887(220)_A(9)_V(3)_t$
iso 3	$10.200(981)_A(20)_V(3)_t$	$3.851(225)_A(7)_V(1)_t$
BBBA	$10.10(98)_A(18)_V$	$3.82(23)_A(8)_V$
Meyer et al. (2016)	10.1(9)	3.83(23)

 CCQE cross section differs by 3–5% compared to commonly-used form factor models (dashed line) when the vector form factors are constrained by recent high-statistics electron-proton scattering data from A1@MAMI.

Proton Magnetic Form Factors including A1@MAMI data

• 1σ bands of G_M^p normalized to dipole form.

- The black long dash-dotted curves: A1@MAMI data with electric charge radius constraint
- the purple bands: world data including A1@MAMI
- the red dotted curves: Ye et al.
- the blue dash-dotted curve: BBBA2005.
- G^p_M from A1@MAMI is significantly different to previous results.



Hyperfine Splitting and Zemach Radius

- Two-photon exchange provides the leading finite-size correction to hyperfine splitting.
- The dominant piece of two-photon exchange is given by, $\Delta E_Z = -2\alpha m_r E_F r_Z$
- ▶ The Zemach radius r_Z is calculated as,

$$r_{Z} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} \left[\frac{G_{M}(Q^{2})G_{E}(Q^{2}) - G_{M}(0)G_{E}(0)}{G_{M}(0)} \right]$$

Proton Zemach radii are compared below,

The Zemach radius is sensitive to charge and magnetic radii, and both electric and magnetic form factor.

KENTUCKY

Conclusion

- Nucleon electromagnetic form factors are a crucial input for precise probes with nucleons and nuclei.
- Form factor fit from relevant kinematical region is presented in a convenient form for applications, i.e., neutrino event generators like GENIE.
- Including data of A1@MAMI Collaboration, CCQE cross sections shift by 3-5 % triggered by proton magnetic form factor.

