Systematic Studies for a Photon-like Low **Energy Excess Search** at MicroBooNE

Gray Yarbrough On Behalf of the MicroBooNE Collaboration 08/25/20

Motivation

- MiniBooNE Cherenkov detector along the booster neutrino beam
- Observed low energy excess (LEE) of electron neutrino like events.
- Use data from MicroBooNE, a liquid argon time projection chamber (LArTPC), to test an explanation as neutral current (NC) Δ radiative decay
- Develop a Boosted Decision Tree analysis to select NC delta radiative and related events in simulation.
- Perform a measurement upon MicroBooNE unboxing to determine likelihood

Signal $1\gamma \Delta \rightarrow N\gamma$ Analysis

- ~85% of backgrounds from π^0
- <u>190692/</u>)

• Central Value MC is sum of Booster Neutrino Beam (BNB) NC π^0 and BNB Other (Thick black line)

See Kathryn Sutton's talk from New Perspectives 1.0 (<u>https://indico.fnal.gov/event/23110/contributions/</u>

Dominant Background $2\gamma \, \mathrm{NC} \, \pi^0$ Analysis

- World's highest stats NC π^0 sample in Argon (See Andrew Mogan's slides)
- Used to constrain most dominant background to our primary signal.
- See Andrew Mogan's talk (<u>https://indico.fnal.gov/event/44451/contributions/192094/</u>)

Event Reweighting Method

• Events are generated via a custom Genie v3 build for MicroBooNE and the MicroBooNE flux simulation.

- <u>http://www.genie-mc.org/</u>
 Evaluates how a shift from underlying CV parameters would impact the likelihood of an event occurring
- Events are given weights based on their "probability" in this universe
- Results can be used to generate correlation/covariance matrices or error bands
- All plots are at final stage of BDT analysis
- Currently including 47 flux (13) and **cross-section** (34) re-weighable systematics

Black bar is uncertainty of particular variation in title Red bar (barely visible) is combined uncertainty from all final analysis variations

Combined Genie Variations

 $2\gamma 1p$ NC π^0 Non Coherent Signal Genie All

Pi0 Momentum (GeV)

Short Baseline Neutrino Fitting Module: **SBNFit**

- "SBNfit is a fitting framework" that allows for combined fit ... with full systematic Bin 3 correlation taken into account "
- Correlation matrices show Bin 2 how correlated bins of data are.
- Performs constraint analysis and in process of testing data^{Bin 1} fits

Cianci et al., PhysRevD.96.055001

Highly

Example Correlation Matrix

Low Correlation	Medium Correlation	Highly Correlated		ו 0.9 0.8
Medium Correlation	Highly Correlated	Medium Correlation		0.7 0.6 0.5
Highly Correlated	Medium Correlation	Low Correlation		0.4 0.3 0.2
Bin 1	Bin 2	Bin 3		

Collapsed (combined subchannels) Correlation Matrix

 $2\gamma 0 p$ - π^0 Momentum (GeV)

$$2\gamma 1p$$
- π^{0}
Momentum (GeV)

 $1\gamma 0p$ -Reconstructed Shower Energy (GeV)

 $1\gamma 1p$ -Reconstructed Shower Energy (GeV)

High correlation between signal and backgrounds

Constraint Estimation

- current) π^0 sideband ($2\gamma 1p$) measurement using the following the method.
- Form a matrix of $1\gamma 1p$ backgrounds and $2\gamma 1p$ selection (M_{ii}).
- For the $2\gamma 1p$ portion assume $\sigma_i^{\text{data}} = \sqrt{N_i^{\text{data}}}$, and $N_i^{\text{data}} = N_i^{MC}$
- bins.

Variation Description	Unconstrained	Constrained	Unconstrained	Constrained
	Uncertainty $1\gamma 1p$	Uncertainty $1\gamma 1p$	Uncertainty $1\gamma 0p$	Uncertainty $1\gamma 0p$
All genie variables combined	22.64%	7.21%	13.82%	4.48%
Fractional cross section for N charge exchange	9.58%	6.69%	1.58%	1.10%
Axial mass for NC resonance ν production	18.94%	5.45%	10.44%	3.01%
Variation of angle of π with respect to detector z axis	7.83%	4.91%	0.98%	0.62%
Vector mass for NC resonance ν production	8.06%	4.77%	4.41%	2.61%
Fractional cross section for N charge exchange	9.32%	4.36%	4.18%	1.96%
Skin Depth-electric currents penetrate conductor	4.93%	3.41%	4.01%	2.77%
π absorption probability	5.12%	3.26%	3.33%	2.13%
Primary Hadron SW Central Spline Variation for π^+	4.51%	3.23%	3.86%	2.76%
N absorption probability.	4.91%	3.21%	4.61%	3.02%

Highest uncertainty variations following constraint estimation **MICROBOONE-NOTE-1016-PUB**

• We evaluate the level of constraint on the uncertainty of the final $1\gamma 1p$ signal by considering the NC (neutral

• Calculate a new matrix $(M_{ii}^{-1})^{new} = M_{ii}^{-1} + 1/N_i^{MC}$ and re-invert for constrained uncertainty on the $1\gamma 1p$

Combined Genie Variation

 $1\gamma 1p$ NC π^0 Non Coherent Background Genie All

Reconstructed Shower Energy (GeV)

the number of "multisims" that are in each bin of x and y. "GENIE All" (the combined GENIE variation) includes a number of highly correlated parameters for our backgrounds i.e. NC Resonance Axial Mass, so the constraint is powerful (3.11 reduction factor)

$2\gamma 1p$ NC π^0 Non Coherent Signal Genie All

Pi0 Momentum (GeV)

Variation plots using the Eventweight Method for combined GENIE variations on NC π^0 non-coherent signal subchannels. (majority of all NC π^0). Y axis correlates to number of events but is not normalized to the POT of the detector. Coloration depicts

Flux π^+ Variations

 $1\gamma 1p$ NC π^0 Non Coherent Background Piplus Spline Variation

Reconstructed Shower Energy (GeV)

Variation plot illustrating the central Sanford Wang π^+ flux uncertainty effect on the $NC\pi^0$ non-coherent signal in the final $2\gamma 1p$ and $2\gamma 0p$ selection. As the primary signal for neutrino production it has a comparably large uncertainty compared to other flux variations. Flux variations have smaller uncertainties but aren't specific to our signal so the constraint is only somewhat effective (1.40 reduction) factor)

 $2\gamma 1p$ NC π^0 Non Coherent Signal Piplus Spline Variation

Pi0 Momentum (GeV)

Results

- A complete flux and cross section systematic study has been performed for the single photon analysis.
- The per bin constraint on the $1\gamma 1p$ and $1\gamma 0p$ effectively shows a ~x3 reduction in systematics
- Testing for data analysis is underway using simulated uncertainties and matrices.

Results

- A complete flux and cross section systematic study has been performed for the single photon analysis.
- The per bin constraint on the $1\gamma 1p$ and $1\gamma 0p$ effectively shows a ~x3 reduction in systematics
- Testing for data analysis is underway using simulated uncertainties and matrices.

MicroBooNE Detector Systematics

Anode Wire Response Modification

- Modify charge signal waveforms on anode wires in MC to better match what is observed in data
- Cover residual and unknown detector effects

Comprehensive detector effects coverage with 10 variations

		E Contra de la contr	
Category	subcategory	Effects Captured	
Wire Response Modification	X (WireX)	Diffusion, Argon purity	
	YZ (WireYZ)	Individual wire response and S	
	θ _{xz} (AngleXZ)	long range induced charge effects,	
	θ _{YZ} (AngleYZ)	deconvolution effects	
	dE/dx	Affects local charge deposition, e.g.	
Light Yield	25% down (LY)	Mis-modeling of light pro	
	Attentuation (LYAtt)		
	Rayleigh (LYRay)		
Other	SCE [1]	Alternate SCE correc	
	Recombination (Recom2)	Mis-modeling of charge recombine	

tick

[1] SCE: Space Charge Effect

MICROBOONE-NOTE-1016-PUB

The preliminary results indicate the total detector effects at final stage for primary 1g1p and 2g1p selections are in general less than 20 %.

Backup

What systematics are included?

Currently including 47 flux (13) and crosssection (34) re-weighable systematics

Flux Systematics

expskin_FluxUnisim horncurrent_FluxUnisim kminus_PrimaryHadronNormalization kplus_PrimaryHadronFeynmanScaling kzero_PrimaryHadronSanfordWang nucleoninexsec_FluxUnisim nucleongexsec_FluxUnisim nucleontotxsec_FluxUnisim piminus_PrimaryHadronSWCentralSplineVariation pioninexsec_FluxUnisim pionqexsec_FluxUnisim piontotxsec_FluxUnisim piplus_PrimaryHadronSWCentralSplineVariation

Genie Cross-Section Systematics

genie_AGKYpT_Genie genie_AGKYxF_Genie genie_DISAth_Genie genie_DISBth_Genie genie_DISCv1u_Genie genie_DISCv2u_Genie genie_FormZone_Genie genie_IntraNukeNabs_Genie genie_IntraNukeNcex_Genie genie_IntraNukeNinel_Genie genie_IntraNukeNmfp_Genie genie_IntraNukeNpi_Genie genie_IntraNukePlabs_Genie genie_IntraNukePIcex_Genie genie_IntraNukePlinel_Genie genie_IntraNukePImfp_Genie genie_IntraNukePlpi_Genie genie_NC_Genie

genie_NC_Genie genie_NonResRvbarp1pi_Genie genie_NonResRvbarp2pi_Genie genie_NonResRvp1pi_Genie genie_NonResRvp2pi_Genie genie_ResDecayEta_Genie genie_ResDecayGamma_Genie genie_ResDecayTheta_Genie genie_ccresAxial_Genie genie_ccresVector_Genie genie_cohMA_Genie genie_cohR0_Genie genie_ncelAxial_Genie genie_ncelEta_Genie genie_ncresAxial_Genie genie_ncresVector_Genie genie_qema_Genie

Collapsed (combined subsamples) Fractional Covariance Matrix

Not visually informative but used in analysis

