Efficient Neutrino Oscillation Parameter Inference with Gaussian Process

Lingge Li, Nitish Nayak, <u>Yiwen Xiao</u>, Jianming Bian, Pierre Baldi

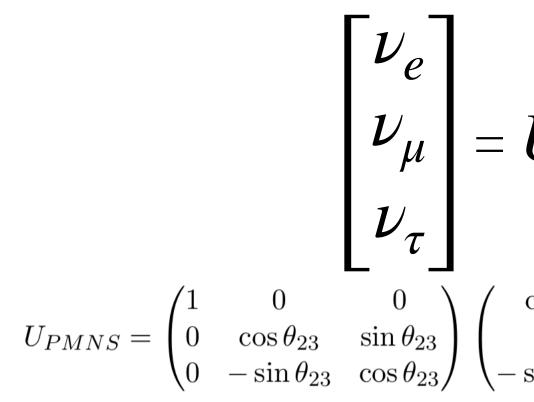
New Perspective 2.0 - 2020

Ref: 10.1103/PhysRevD.101.012001

UC-Irvine

Neutrino Oscillation

- Neutrinos: 2 kinds of states, each comes with 3 types
 - Flavor States (ν_e , ν_μ , ν_τ) what we observed
 - Mass Eigenstates (ν_1 , ν_2 , ν_3) what in between observations
- Principle of superposition connects them via PMNS matrix, i.e.



$$\begin{bmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{bmatrix}$$

$$\stackrel{\cos \theta_{13} \quad 0 \quad \sin \theta_{13} e^{-i\delta}}{\stackrel{0}{}_{-} \sin \theta_{13} e^{i\delta} \quad 0 \quad \cos \theta_{13}} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Neutrino Oscillation

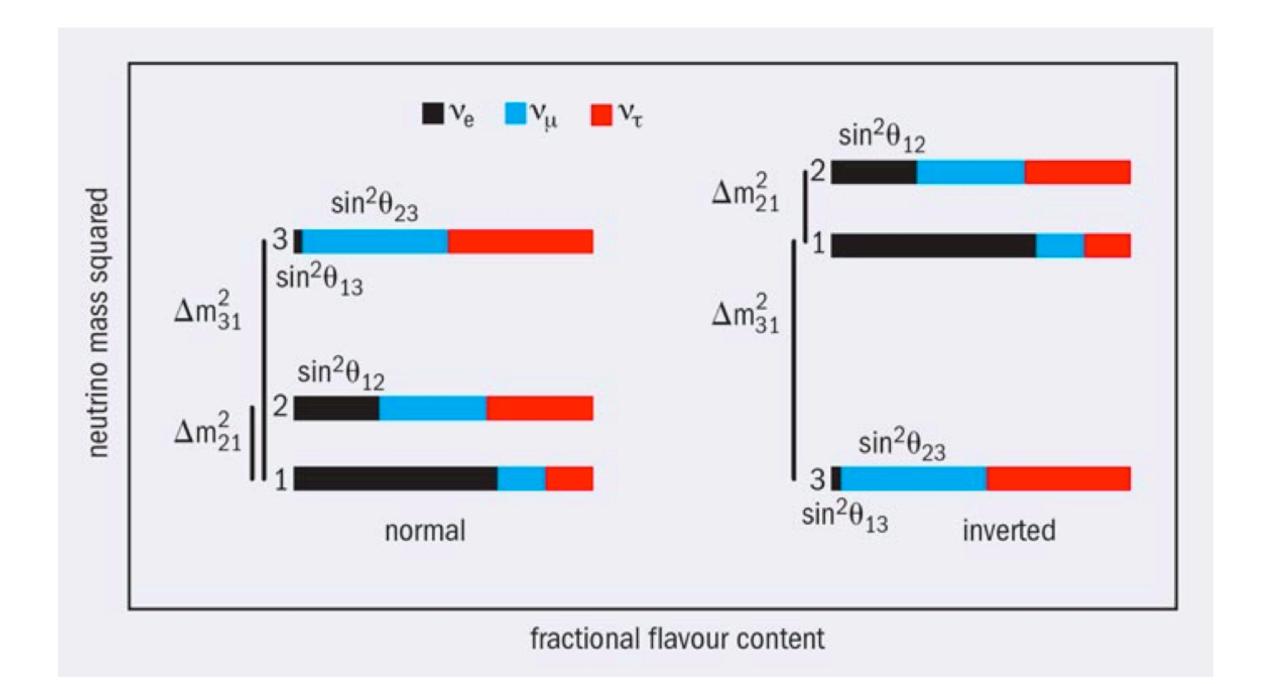
• For neutrino propagating in vacuum,

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j}^{3} \Re(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta i}^{*})\sin^{2}(\frac{\Delta m_{ij}^{2}L}{4E_{\nu}}) + 2\sum_{i>j}^{3} \Im(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta i}^{*})\sin(\frac{\Delta m_{ij}^{2}L}{4E_{\nu}})$$

- $P(\nu_{\mu} \rightarrow \nu_{\mu})$ is sensitive to $\sin^2(2\theta_{23})$ and $|\Delta m_{32}^2|$
- Broadly, solar experiments give handle on (21) parameters, reactor experiments for θ_{13} • Long baseline (LBL) experiments gives handle on (32) parameters
- - Non-zero θ_{13} opens up $P(\nu_{\mu} \rightarrow \nu_{e})$ channel, sensitive to δ_{CP} , θ_{23} octant, and $sgn(\Delta m_{32}^2)$

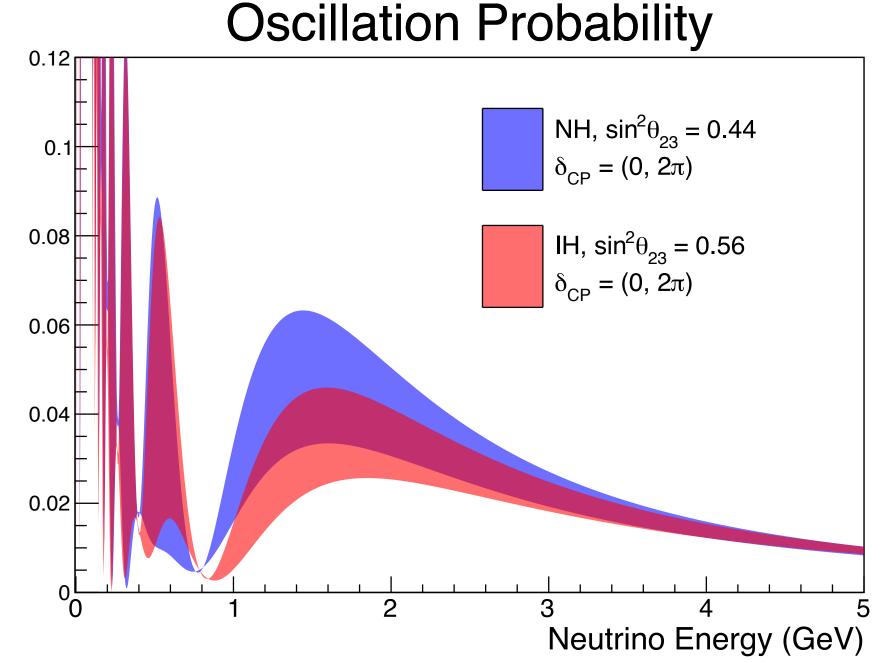
Neutrino Oscillation

- In LBL experiments, we want to know if
 - $\Delta m_{32}^2 > 0$ or < 0? (Normal Hierarchy or Inverted Hierarchy)
 - Has implication for neutrino mass measurements
 - Octant of θ_{23} or $\theta_{23} = 45^{\circ}$?
 - $\sin(\delta_{CP}) \neq 0$?
 - Indicate whether CP-violation exists. (matter-antimatter asymmetry)



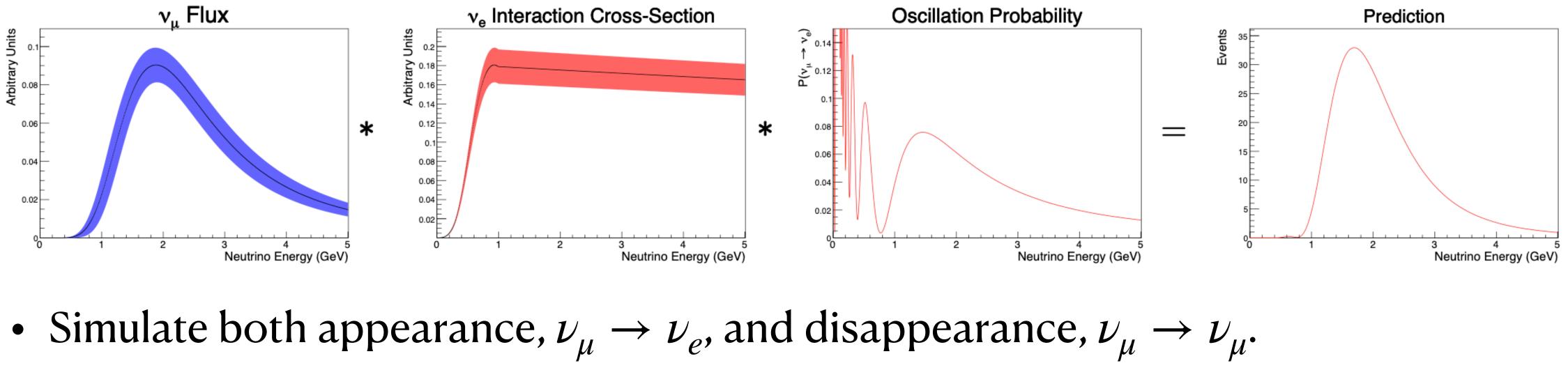
Statistic Issues

- Oscillation parameters usually measured via the Maximum Likelihood Estimation (MLE) using the PMNS model and comparing it to the observation, such as the energy spectrum.
- However, LBL experiments (T2K, NOvA) only collect a handful of statistics over years of operation.
- Oscillation Probability have complicated dependence on multiple parameters —> difficult to delineate
- Therefore, Confidence Intervals are hard to construct

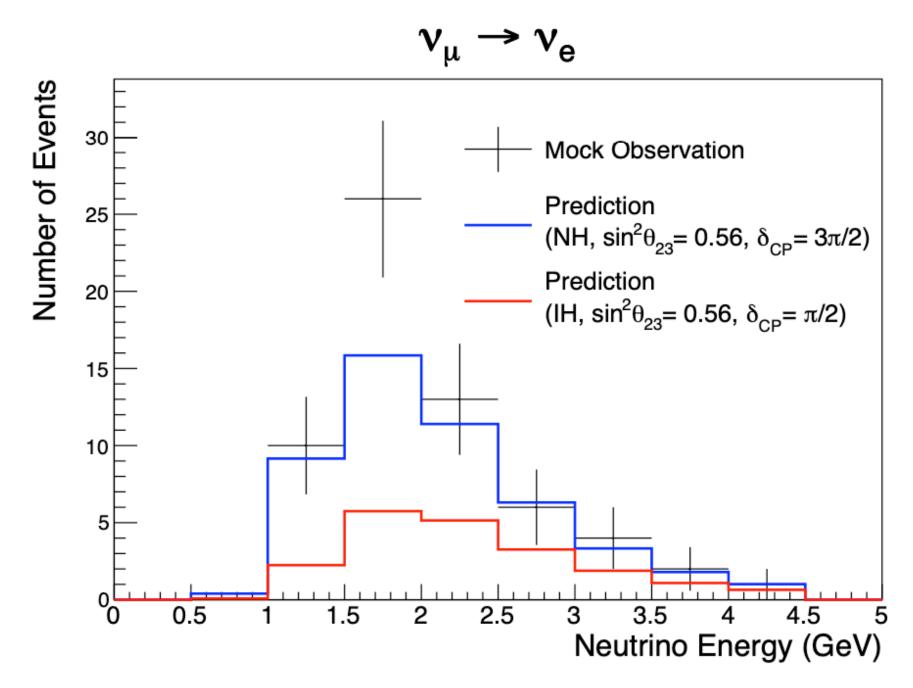


Toy Experiment

- Modeled on NOvA. Set, baseline, L = 810km with ν_{μ} flux peaking at 2 GeV
- Add, 10% normalization error on flux and cross-section model.
- Get, $\nu_{\mu} \rightarrow \nu_{e}$ prediction by multiplying toy shapes for flux, cross-section and oscillation probability.

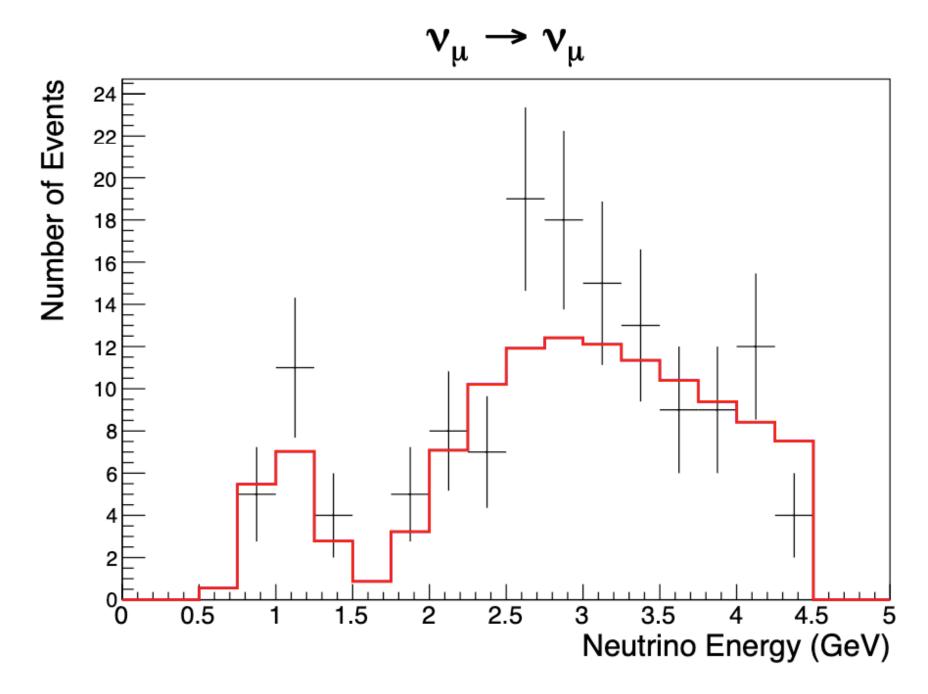


Toy Experiment



- Toy data (\vec{x}) from Poisson variation with some chosen oscillation parameters.
- Including both oscillation parameters, θ , and nuisance parameters (flux and cross-sections error), δ . •
- Best fit $(\hat{\theta}, \hat{\delta})$ is found by minimizing negative log-likelihood over every energy bins, *i*

$$-2\log L(\theta,\delta) = -2\sum_{i\in I}\log Pois(x_i; v(\theta,\delta)_i) - \sum_{i\in I}x_i + \sum_{i\in I}v(\theta,\delta)_i + \delta^2$$



Confidence Interval

• Typically, using Likelihood Ratio Test (LRT) to estimate confidence interval

$$\Delta \chi^2 = -2\log$$

• In asymptotic case, test statistic: $\Delta \chi^2 \sim \chi$

Table 38.2: Values of $\Delta \chi^2$ or $2\Delta \ln L$ corresponding to a coverage probability $1 - \alpha$ in the large data sample limit, for joint estimation of m parameters.

$(1 - \alpha)$ (%
68.27
90.
95.
95.45
99.
99.73

$L(\theta_0)$

 $\arg \max_{\theta} L(\theta)$

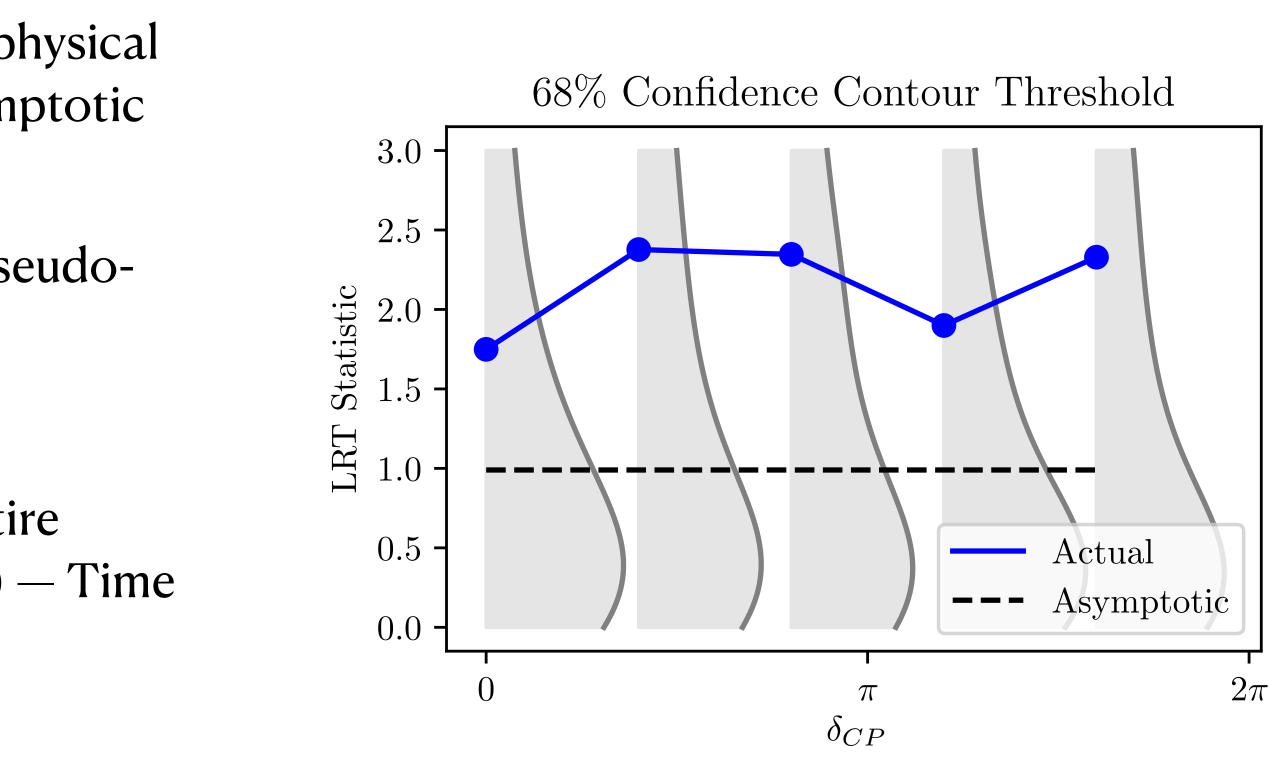
$$\chi_k^2$$
 (Wilks Theorem)

6)	m = 1	m=2	m=3
	1.00	2.30	3.53
	2.71	4.61	6.25
	3.84	5.99	7.82
	4.00	6.18	8.03
	6.63	9.21	11.34
	9.00	11.83	14.16

From the PDG Review on Statistics

Feldman - Cousins

- Due to the small sample size in neutrino data and physical boundaries on the oscillation parameters, the asymptotic distribution is unreliable
- Explicitly simulate $\Delta \chi^2$ distribution using lots of pseudoexperiments
- Find p-value associated with $\Delta \chi^2_{data}$ for each point
- In practice, FC conducts a grid-search over the entire parameter space with many toy Monte-Carlo (MC) — Time Consuming
- Want a refined algorithm.
 - Approximating FC P-value surface non-parametrically using only a fraction of grid points



Gaussian Process

- A Gaussian Process (GP) is a special case of Bayesian learning.
- Technically, GP can be specified by a mean function, $\mu(x)$ and a covariance function (kernel), k(x, x')
 - Assume a collection of random models with certain probability (Priors with mean and standard deviation)

$$\begin{pmatrix} f(x) \\ f(x') \end{pmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu(x) \\ \mu(x') \end{bmatrix}, \begin{bmatrix} k(x,x) & k(x,x') \\ k(x,x') & k(x',x') \end{bmatrix} \right)$$

- Observed data update Priors —> Posteriors (Predictions for new data) $f(x')|f(x) \sim \mathcal{N}(\frac{k(x,x')}{k(x,x)}f(x), k(x',x') - \frac{k(x,x')^2}{k(x,x)})$
- Quantifies uncertainty in model estimates (Posterior mean and standard deviation)

$$\frac{(x,x')}{k(x,x)}f(x), k(x',x') - \frac{k(x,x')^2}{k(x,x)}$$

Gaussian Process

A common choice of GP kernel k is the squared lacksquareexponential radial basis function (RBF)

$$k(x_1, x_2) = \exp(-\frac{(x_1 - x_2)}{l^2})$$

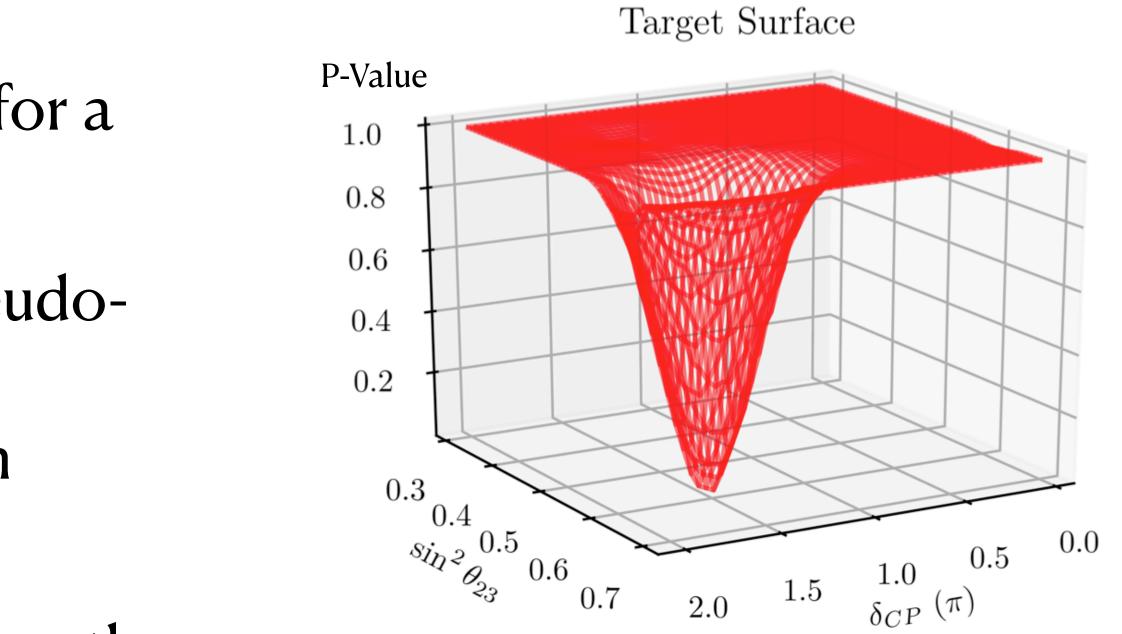
, which tells us that GP results at nearby points are highly influenced by observations at a given point while further out, they aren't.

• GP uses the kernel function and measured data to predict the value for an unseen point with posterior mean and posterior standard deviation



Gaussian Process for Feldman-Cousins Method

- Fitting a GP to target p-value surface for a given contour.
- Reduce the time-cost by throwing pseudoexperiments at some point based on approximation, instead of all points in parameter space.
- Construct Confidence Interval based on the P-value surface.

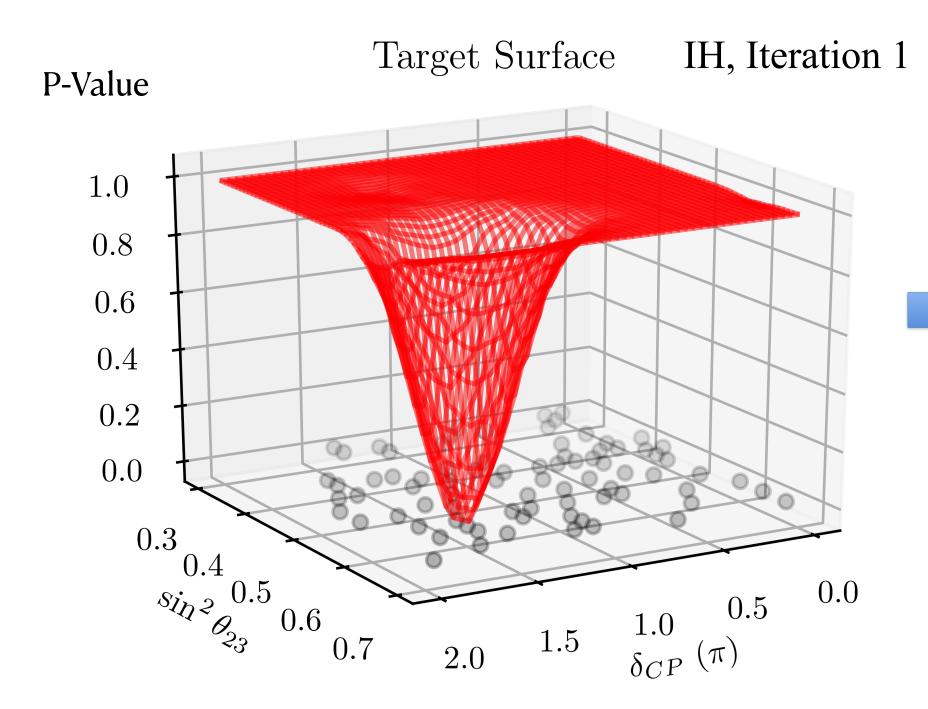


Optimized Confidence Interval Search

 \bullet

 $a(\theta) =$

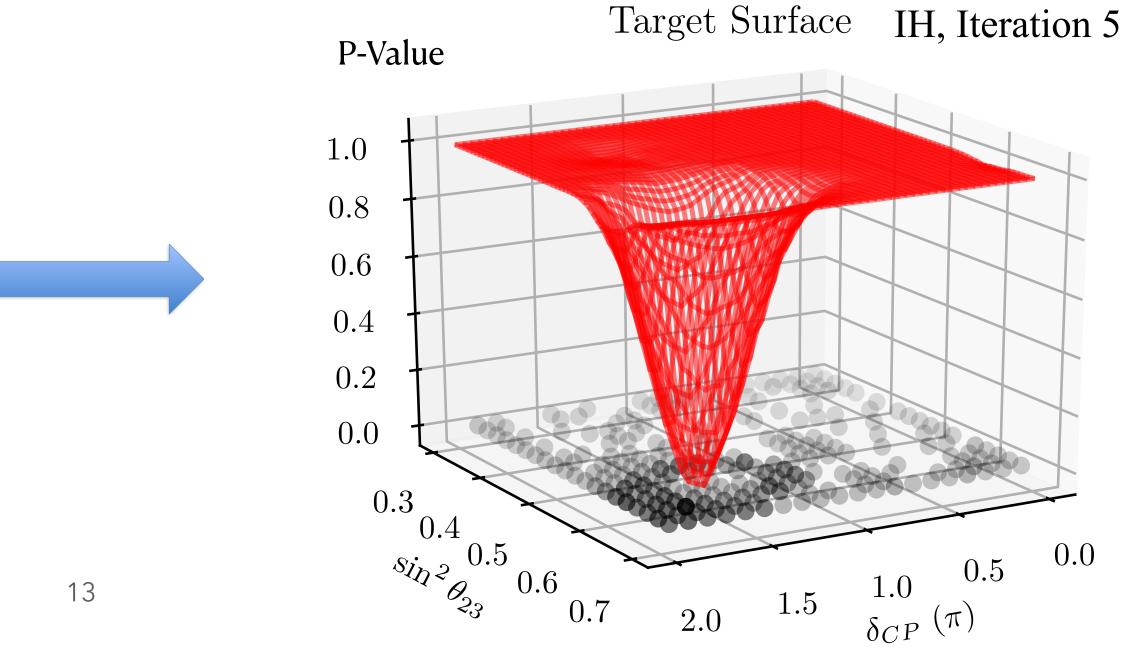
- Here, $\hat{q}(\theta)$ is GP mean, $\sigma_{\hat{q}(\theta)}$ is a GP uncertainty, α_i designates confidence levels, e.g. 68% or 90%



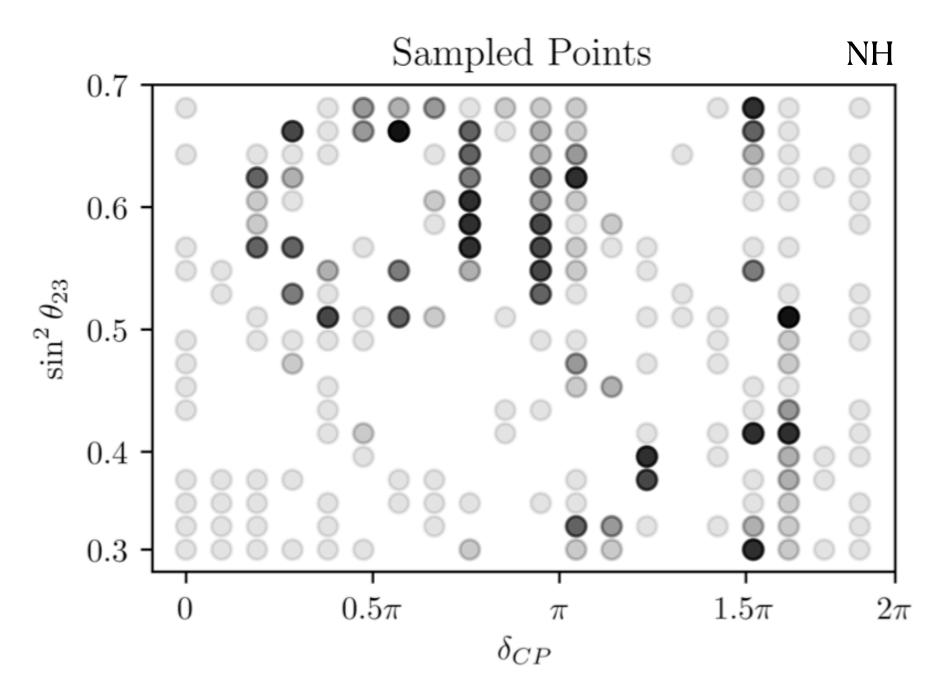
Use an acquisition function that proposed new points in θ -space to explore based on GP approximated p-value surface

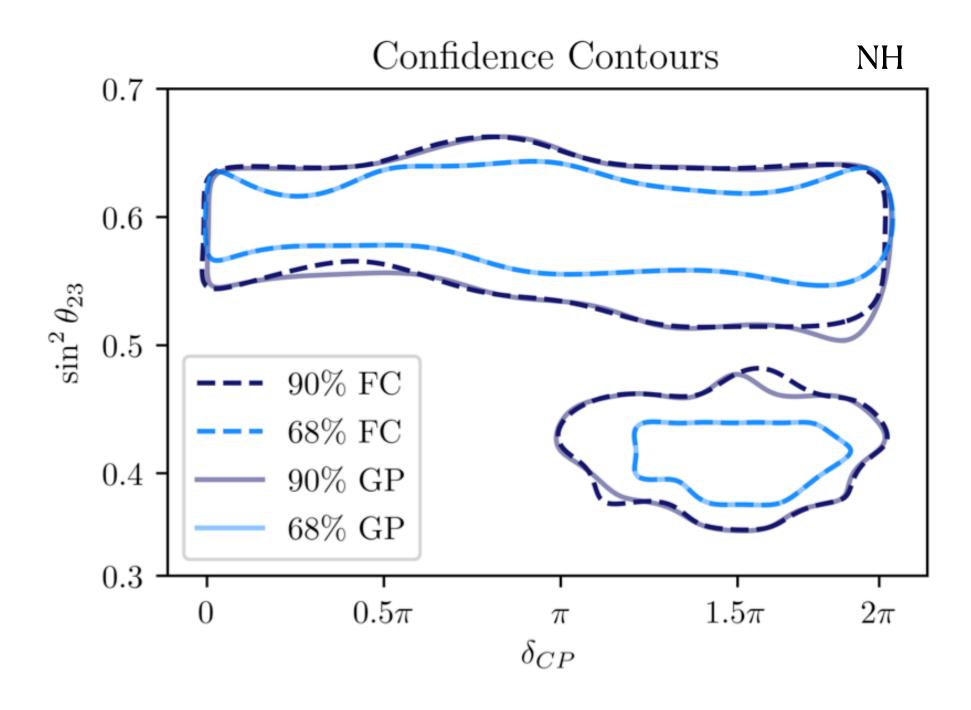
$$\sum_{lpha_i} |rac{\hat{q}(heta)-lpha_i}{\sigma_{\hat{q}(heta)}}|^{-1}$$

 $a(\theta)$ balances between exploration, i.e. reducing approximation uncertainty, and exploitation, i.e. reaching the extremum.

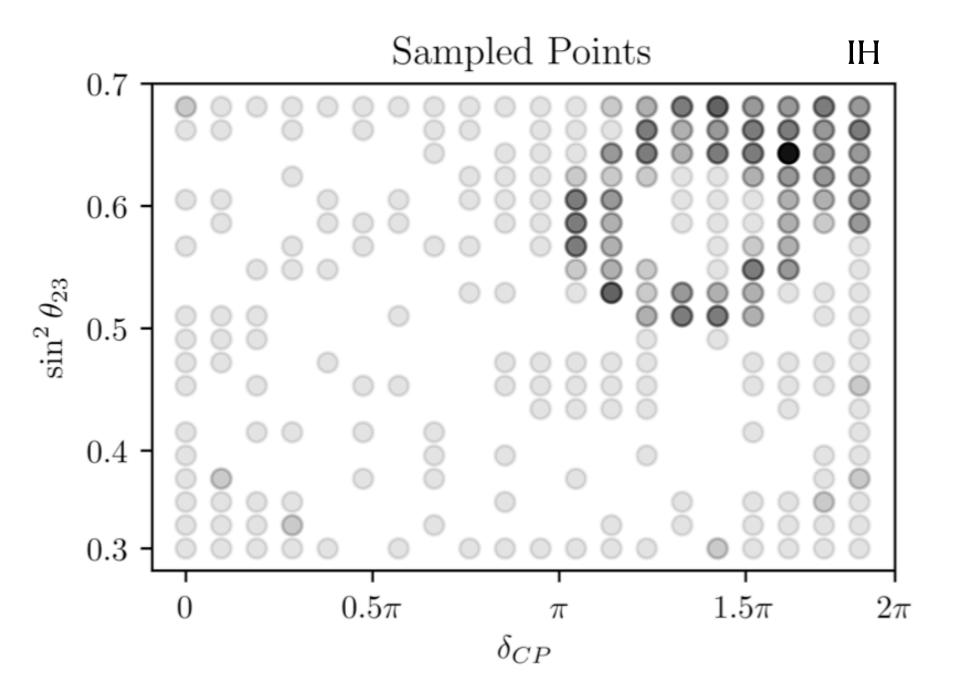


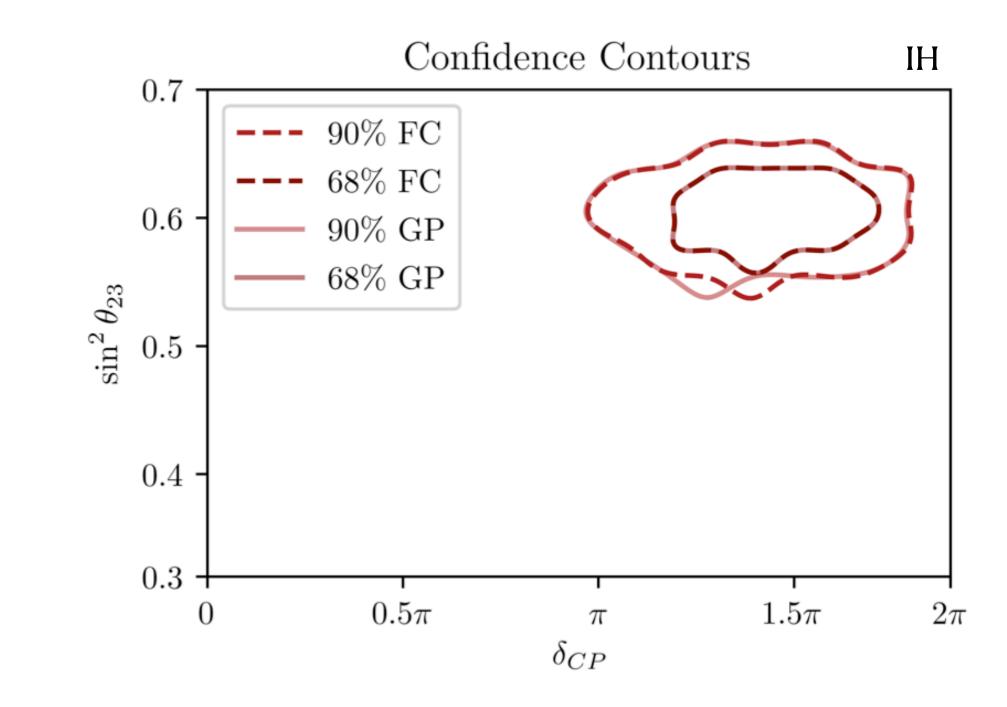
- Oscillation parameters similar to 2018 best estimate from NOvA ($\theta_{23} = 0.56$, $\Delta m_{32}^2 = 2.44 * 10^{-3} eV^2$, $\delta_{CP} = 1.5\pi$)
- $\sin^2 \theta_{23} \delta_{CP} 68\%$ and 90% CI for NH after 5 iterations.



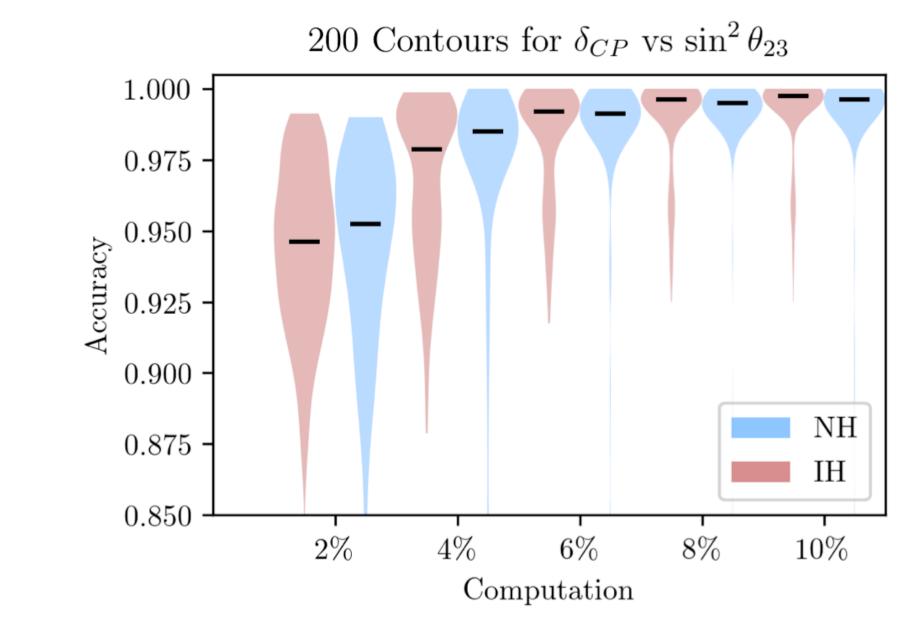


- Oscillation parameters similar to 2018 best estimate from NOvA ($\theta_{23} = 0.56$, $\Delta m^2_{32} = 2.44 * 10^{-3} eV^2$, $\delta_{CP} = 1.5\pi$)
- $\sin^2 \theta_{23} \delta_{CP} 68\%$ and 90% CI for IH after 5 iterations.





- performance
- Progress shows the search algorithm converges to the FC value $\sim 10 \times \text{faster}$ for 2D case
- Median Accuracy for for 2D is > 99.5% for both NH and IH



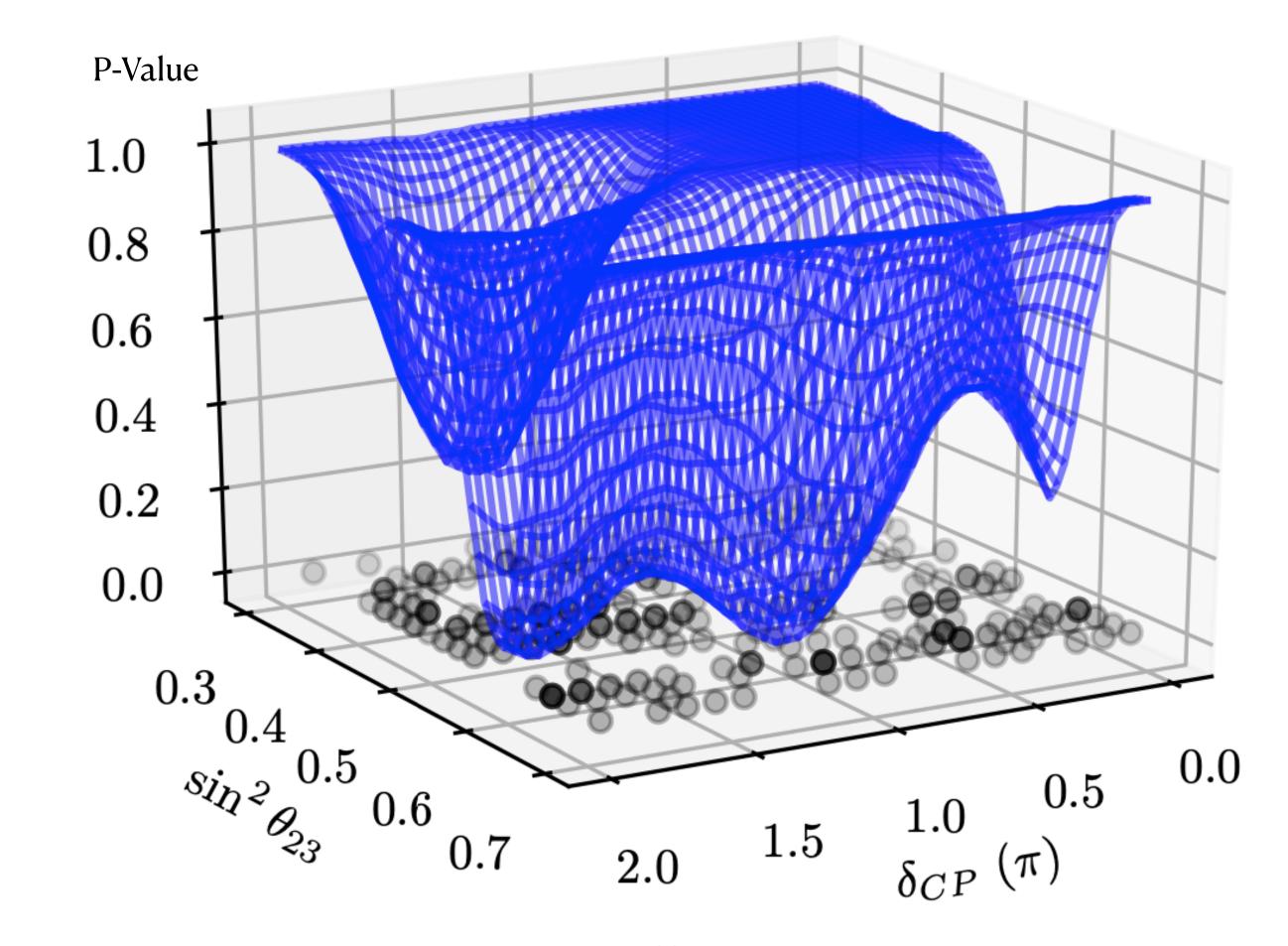
Use classification accuracy of all grid points, taking FC result as truth, to evaluate

Summary

- Neutrino Oscillation experiments provide interesting test case for estimating frequentist confidence intervals.
- LBL experiments typically proceed via Feldman-Cousins
- However, simulating $\Delta \chi^2$ distribution across multi-dimensional parameter space requires huge computational source
- We've studied Gaussian Process on a toy LBL set-up
- Helps us estimate frequentist contour edges to quite a high accuracy without having to sample the entire parameter space.
- See publication for more details : Phys.Rev.D 101 (2020) 1, 012001
- All code with illustrative notebooks here : <u>https://github.com/nitish-nayak/ToyNuOscCI</u>, maintained by Lingge (linggeli7@gmail.com), Nitish (nayakb@uci.edu), and Yiwen (yiwenx7@uci.edu)

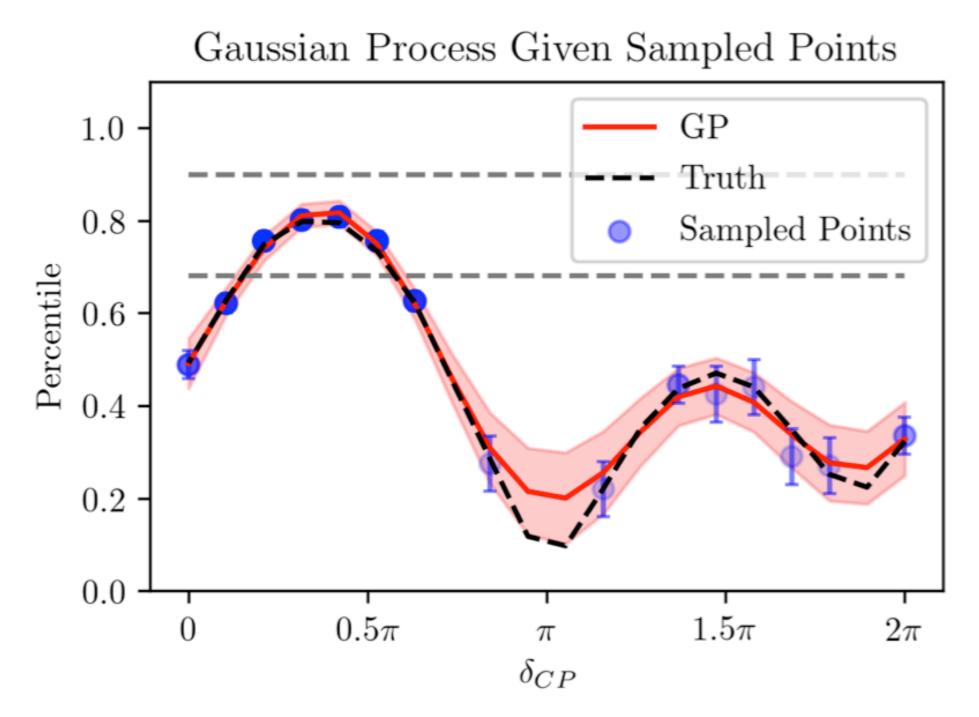
Thanks!

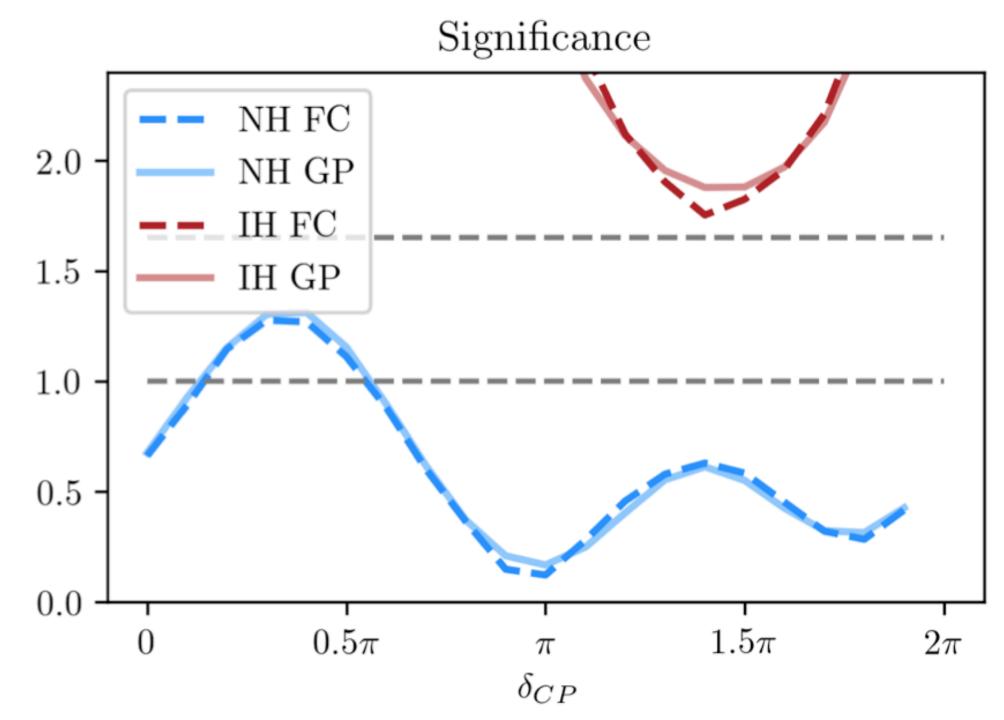
Backup



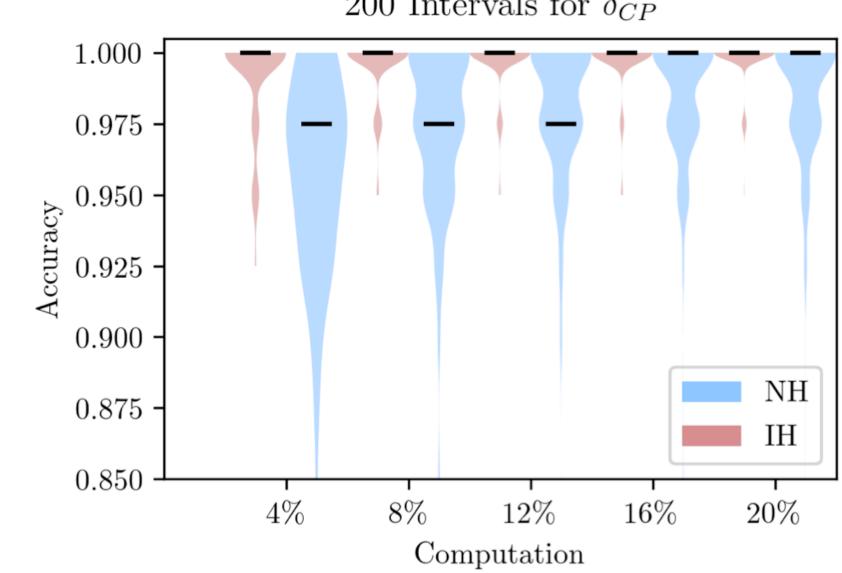
Target Surface

- Oscillation parameters similar to 2018 best estimate from NOvA ($\theta_{23} = 0.56$, $\Delta m^2_{32} = 2.44 * 10^{-3} eV^2$, $\delta_{CP} = 1.5\pi$)
- Significance of rejecting δ_{CP} only after 5 iterations. •





- performance
- Median Accuracy for 1D is 100% for both NH and IH



Use classification accuracy of all grid points, taking FC result as truth, to evaluate

Progress shows the search algorithm converges to the FC value $\sim 5 \times 10^{-10}$ faster for 1D case.

200 Intervals for δ_{CP}

Pseudo-Code

Algorithm 1 \mathcal{GP} iterative confidence contour finding for each iteration t = 1, 2, ... do Propose new points in parameter space arg max_{θ} $a(\theta)$ for each point θ' do Simulate likelihood ratio distribution for k = 1, 2, ... do Perform a pseudo experiment Maximize the likelihood with respect to (θ, δ) Maximize the likelihood with constraint $\theta = \theta'$ end for Obtain critical value $c(\theta')$ end for Update \mathcal{GP} approximation $\hat{c}(\theta)$ Update confidence contours end for