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Neutrino Oscillation

• Neutrinos: 2 kinds of states, each comes with 3 types 

• Flavor States (  ,  ,  ) — what we observed 

• Mass Eigenstates  (  ,  , ) — what in between observations 

• Principle of superposition connects them via PMNS matrix, i.e. 
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Neutrino Oscillation

• For neutrino propagating in vacuum, 

 

• Broadly, solar experiments give handle on ( ) parameters, reactor experiments for  

• Long baseline (LBL) experiments gives handle on ( ) parameters 

•  is sensitive to  and  

• Non-zero  opens up  channel, sensitive to  ,  octant, and 
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Neutrino Oscillation

• In LBL experiments, we want to know if 

•  >  or <   (Normal Hierarchy or 
Inverted Hierarchy) 

• Has implication for neutrino mass 
measurements 

• Octant of  or  =  °  

•  

• Indicate whether CP-violation exists. 
(matter-antimatter asymmetry)

Δm2
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θ23 θ23 45 ?

sin(δCP) ≠ 0?
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Statistic Issues

• Oscillation parameters usually measured via the 
Maximum Likelihood Estimation (MLE) using the 
PMNS model and comparing it to the observation, 
such as the energy spectrum. 

• However, LBL experiments (T2K, NOvA) only collect 
a handful of statistics over years of operation. 

• Oscillation Probability have complicated dependence 
on multiple parameters —> difficult to delineate 

• Therefore, Confidence Intervals are hard to 
construct
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Toy Experiment
• Modeled on NOvA. Set, baseline, km with  flux peaking at  GeV 

• Add, % normalization error on flux and cross-section model. 

• Get,  prediction by multiplying toy shapes for flux, cross-section and oscillation 
probability.

L = 810 νμ 2
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νμ → νe
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• Simulate both appearance, , and disappearance, .νμ → νe νμ → νμ



Toy Experiment
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• Toy data ( ) from Poisson variation with some chosen oscillation parameters. 

• Including both oscillation parameters, , and nuisance parameters (flux and cross-sections error), . 

• Best fit  is found by minimizing negative log-likelihood over every energy bins,  

x
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Confidence Interval
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• Typically, using Likelihood Ratio Test (LRT) to estimate confidence interval 

                                                     

• In asymptotic case, test statistic:  ~  （Wilks Theorem)

Δχ2 = − 2 log
L(θ0)

arg maxθ L(θ)

Δχ2 χ2
k



Feldman - Cousins
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• Due to the small sample size in neutrino data and physical 
boundaries on the oscillation parameters, the asymptotic 
distribution is unreliable 

• Explicitly simulate  distribution using lots of pseudo-
experiments 

• Find p-value associated with  for each point 

• In practice, FC conducts a grid-search over the entire 
parameter space with many toy Monte-Carlo (MC) — Time 
Consuming 

• Want a refined algorithm. 

• Approximating FC P-value surface non-parametrically 
using only a fraction of grid points
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Gaussian Process
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• A Gaussian Process (GP) is a special case of Bayesian learning. 

• Technically, GP can be specified by a mean function,  and a covariance function (kernel), 
 

• Assume a collection of random models with certain probability (Priors with mean and 
standard deviation) 

 
• Observed data update Priors —> Posteriors (Predictions for new data) 

 
• Quantifies uncertainty in model estimates (Posterior mean and standard deviation)

μ(x)
k(x, x′ )



Gaussian Process
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• A common choice of GP kernel k is the squared 
exponential radial basis function (RBF) 

 

, which tells us that GP results at nearby points are 
highly influenced by observations at a given point while 
further out, they aren't. 

• GP uses the kernel function and measured 
data to predict the value for an unseen point 
with posterior mean and posterior standard 
deviation

k(x1, x2) = exp(−
(x1 − x2)

l2
)



Gaussian Process for Feldman-Cousins Method
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• Fitting a GP to target p-value surface for a 
given contour.  

• Reduce the time-cost by throwing pseudo-
experiments at some point based on 
approximation, instead of all points in 
parameter space. 

• Construct Confidence Interval based on the 
P-value surface.

P-Value



Optimized Confidence Interval Search
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• Use an acquisition function that proposed new points in -space to explore based on GP approximated p-value surface 

 

• Here,  is GP mean,  is a GP uncertainty,  designates confidence levels, e.g. 68% or 90% 

•  balances between exploration, i.e. reducing approximation uncertainty, and exploitation, i.e. reaching the extremum.

θ

̂q(θ) σ ̂q(θ) αi

a(θ)

±CP (º)

0.00.51.01.52.0

sin 2
µ23

0.3
0.4

0.5
0.6

0.7

0.0

0.2

0.4

0.6

0.8

1.0

Target SurfaceIH, Iteration 1 IH, Iteration 5
P-Value P-Value



Results
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• Oscillation parameters similar to 2018 best estimate from NOvA (  ,  
 , ) 

•  68% and % CI for NH after  iterations. 

θ23 = 0.56
Δm2

32 = 2.44 * 10−3eV2 δCP = 1.5π

sin2 θ23 − δCP 90 5
NHNH



Results
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• Oscillation parameters similar to 2018 best estimate from NOvA (  ,  
 , ) 

•  68% and % CI for IH after  iterations. 

θ23 = 0.56
Δm2

32 = 2.44 * 10−3eV2 δCP = 1.5π

sin2 θ23 − δCP 90 5
IHIH



Results
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• Use classification accuracy of all grid points, taking FC result as truth, to evaluate 
performance 

• Progress shows the search algorithm converges to the FC value ~ faster for 2D case  

• Median Accuracy for for 2D is % for both NH and IH

10 ×

> 99.5



Summary
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• Neutrino Oscillation experiments provide interesting test case for estimating frequentist 
confidence intervals. 

• LBL experiments typically proceed via Feldman-Cousins 

• However, simulating  distribution across multi-dimensional parameter space requires huge 
computational source 

• We’ve studied Gaussian Process on a toy LBL set-up 
• Helps us estimate frequentist contour edges to quite a high accuracy without having to sample the 

entire parameter space. 
• See publication for more details : Phys.Rev.D 101 (2020) 1, 012001 
• All code with illustrative notebooks here : https://github.com/nitish-nayak/ToyNuOscCI, 

maintained by Lingge (linggeli7@gmail.com), Nitish (nayakb@uci.edu), and Yiwen 
(yiwenx7@uci.edu)
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Thanks!
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Results
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Results
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• Oscillation parameters similar to 2018 best estimate from NOvA (  ,  
 , ) 

• Significance of rejecting  only after  iterations.  

θ23 = 0.56
Δm2

32 = 2.44 * 10−3eV2 δCP = 1.5π

δCP 5



Results
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• Use classification accuracy of all grid points, taking FC result as truth, to evaluate 
performance 

• Progress shows the search algorithm converges to the FC value ~ faster for 1D case. 

• Median Accuracy for 1D is % for both NH and IH

5 ×

100



Pseudo-Code
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