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Neutrino Oscillation

* Neutrinos: 2 kinds of states, each comes with 3 types

» Flavor States (v, , v, , v, ) — what we observed

» Mass Eigenstates (v, , v, , 13) — what in between observations

* Principle of superposition connects them via PMNS matrix, i.e.
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Neutrino Oscillation

* For neutrino propagating in vacuum,
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» Broadly, solar experiments give handle on (21) parameters, reactor experiments for 0,
* Long baseline (LBL) experiments gives handle on (32) parameters

» P(v, — v,) is sensitive to sin2(26’23) and | Am322\

» Non-zero 0,5 opens up P(v, — v,) channel, sensitive to op , 6,3 octant, and

Sgn(Amgz)



* In LBL experiments, we want to know if

. Am322 >0 or <0 ? (Normal Hierarchy or
Inverted Hierarchy)

* Has implication for neutrino mass
measurements

* Octant of 0,53 or 0,3, =45°7
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* Indicate whether CP-violation exists.

(matter-antimatter asymmetry)

neutrino mass squared
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Statistic Issues

Oscillation parameters usually measured via the
Maximum Likelihood Estimation (MLE) using the
PMNS model and comparing it to the observation,
such as the energy spectrum.

However, LBL experiments (T2K, NOvA) only collect
a handful of statistics over years of operation.

Oscillation Probability have complicated dependence
on multiple parameters —> difficult to delineate

Therefore, Confidence Intervals are hard to
construct
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Toy Experiment

* Modeled on NOVA. Set, baseline, L = 810km with v, flux peaking at 2 GeV

* Add, 10% normalization error on flux and cross-section model.

 Get, v, — v, prediction by multiplying toy shapes for flux, cross-section and oscillation
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» Simulate both appearance, v, — v,, and disappearance, v, = v,



Toy Experiment
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* Toy data (x) from Poisson variation with some chosen oscillation parameters.
* Including both oscillation parameters, 6, and nuisance parameters (flux and cross-sections error), 0.

* Best fit (5’, 3) is found by minimizing negative log-likelihood over every energy bins, i

—2log L(0,8) = =2 log Pois(xi; v(0,8)i) — » xi+ » v(0,8)i+ 6
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Confidence Interval

 Typically, using Likelihood Ratio Test (LRT) to estimate confidence interval
L(6)

Ay? _
arg max, L(0)

— 2log

+ In asymptotic case, test statistic: Ay* ~ )(,3 (Wilks Theorem)

Table 38.2: Values of Ax? or 2A1n L corresponding to a coverage probability
1 — « in the large data sample limit, for joint estimation of m parameters.

(1—-a) (%) m=1 m=2 m=23
68.27 1.00 2.30 3.93
90. 2.71 4.61 6.25
95. 3.84 5.99 7.82
95.45 4.00 6.18 8.03
99. 6.63 9.21 11.34
99.73 9.00 11.83 14.16

From the PDG Review on Statistics



Feldman - Cousins

Due to the small sample size in neutrino data and physical
boundaries on the oscillation parameters, the asymptotic
distribution is unreliable

Explicitly simulate Ay distribution using lots of pseudo-
experiments

Find p-value associated with A)(ﬁam for each point

In practice, FC conducts a grid-search over the entire
parameter space with many toy Monte-Carlo (MC) — Time
Consuming

Want a refined algorithm.

* Approximating FC P-value surface non-parametrically
using only a fraction of grid points
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Gaussian Process

* A Gaussian Process (GP) is a special case of Bayesian learning.

* Technically, GP can be specified by a mean function, y¢(x) and a covariance function (kernel),

k(x,x")

* Assume a collection of random models with certain probability (Priors with mean and
standard deviation)

(e )= [ Ly 6 D

* Observed data update Priors —> Posteriors (Predictions for new data)

/

Fx))F(x) ~ AKX

k(x, x)

k(x,x")?

f(x)7k(xl,xl)— k(X,X) )

* Quantifies uncertainty in model estimates (Posterior mean andm deviation)
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Gaussian Process

* A common choice of GP kernel k is the squared
exponential radial basis function (RBF) Gaussian Process

Prior

Posterior

=
oy

, which tells us that GP results at nearby points are
highly influenced by observations at a given point while
further out, they aren't.

-
M=
]

Percentile

e GP uses the kernel function and measured

data to predict the value for an unseen point 0 " o
with posterior mean and posterior standard
deviation
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Gaussian Process for Feldman-Cousins Method

Target Surface

* Fitting a GP to target p-value surface for a
given contour.

* Reduce the time-cost by throwing pseudo-
experiments at some point based on
approximation, instead of all points in
parameter space.

 Construct Confidence Interval based on the
P-value surface.
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Optimized Confidence Interval Search

* Use an acquisition function that proposed new points in 6-space to explore based on GP approximated p-value surface

* Here, g(0) is GP mean, 09 1s 2 GP uncertainty, o designates confidence levels, e.g. 68% or 90%

* a(f) balances between exploration, i.e. reducing approximation uncertainty, and exploitation, i.e. reaching the extremum
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Results

* Oscillation parameters similar to 2018 best estimate from NOvA (6,; = 0.56,

Ams, =2.44%107eV?*, §cp = 1.57)

* sin“ 0, — 8.-p 68% and 90% CI for NH after 5 iterations.
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Results

* Oscillation parameters similar to 2018 best estimate from NOvA (6,; = 0.56,

Ams, =2.44%107eV?*, §cp = 1.57)

* sin“0,; — 8.-p 68% and 90% CI for IH after 5 iterations.
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Results

Use classification accuracy of all grid points, taking FC result as truth, to evaluate
performance

Progress shows the search algorithm converges to the FC value ~ 10 X faster for 2D case

Median Accuracy for for 2D is > 99.5% for both NH and IH
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Summary

Neutrino Oscillation experiments provide interesting test case for estimating frequentist
confidence intervals.

LBL experiments typically proceed via Feldman-Cousins

However, simulating Ay? distribution across multi-dimensional parameter space requires huge
computational source

We've studied Gaussian Process on a toy LBL set-up

Helps us estimate frequentist contour edges to quite a high accuracy without having to sample the
entire parameter space.

See publication for more details : Phys.Rev.D 101 (2020) 1, 012001

All code with illustrative notebooks here : https:/github.com/nitish-nayak/ToyNuQOscClI,

maintained by Lingge (linggeliz@gmail.com), Nitish (nayakb@uci.edu), and Yiwen
(viwenxz@uci.edu)
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Results

Target Surface
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Results

* Oscillation parameters similar to 2018 best estimate from NOvA (6,; = 0.56,
Ams, =2.44%107eV?*, §cp = 1.57)

* Significance of rejecting o,-p only after 3 iterations.
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Results

Use classification accuracy of all grid points, taking FC result as truth, to evaluate
performance

Progress shows the search algorithm converges to the FC value ~ 5 X faster for 1D case.

Median Accuracy for 1D is 100% for both NH and IH
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Pseudo-Code

Algorithm 1 GP iterative confidence contour finding

for each iteration t =1, 2,... do
Propose new points in parameter space arg max, a(60)
for each point 6’ do
Simulate likelihood ratio distribution
for k=1,2,...do
Perform a pseudo experiment
Maximize the likelihood with respect to (6, 9)
Maximize the likelihood with constraint 0 = 0’
end for
Obtain critical value c(60)
end for
Update GP approximation ¢(6)
Update confidence contours
end for
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