Experimental efforts of the last decades have been unsuccessful in detecting WIMPs (Weakly Interacting Massive Particles) in the 10-to-104 GeV/𝑐2 range, thus motivating the search for lighter Dark Matter (DM). DAMIC (DArk Matter in CCDs) experiment aims for direct detection of light DM particles (𝑚𝜒<10 GeV/𝑐2) by means of Charge-Coupled Devices (CCDs). Scientific fully-depleted CCDs consisting...
The SuperCDMS collaboration uses cryogenic silicon and germanium detectors to directly search for dark matter. Nonbaryonic dark matter in the mass range of 1-10 GeV/c2 that interacts primarily through nuclear recoils will deposit less than a keV of energy in detectors. These energy depositions will produce phonons and electron-hole pairs. The electron-hole pairs are accelerated across the...
The Super Cryogenic Dark Matter Search experiment aims to directly detect the elusive Weakly Interacting Massive Particle (WIMP) by measuring ionization and phonons produced by WIMP-nucleon scattering. During its operation at the Soudan Underground Laboratory, germanium detectors were operated with a 70 Volt bias, a mode known as CDMS low ionization threshold experiment (CDMSlite), to search...
In this talk, I will present the results of a recent search for milli-charged particles using a data sample of proton-proton collisions provided by the CERN Large Hadron Collider in 2018. This search was carried out with a prototype scintillator-based detector, which allows the first sensitivity to particles with charges ≤0.1e at a hadron collider. The existence of new particles with masses...