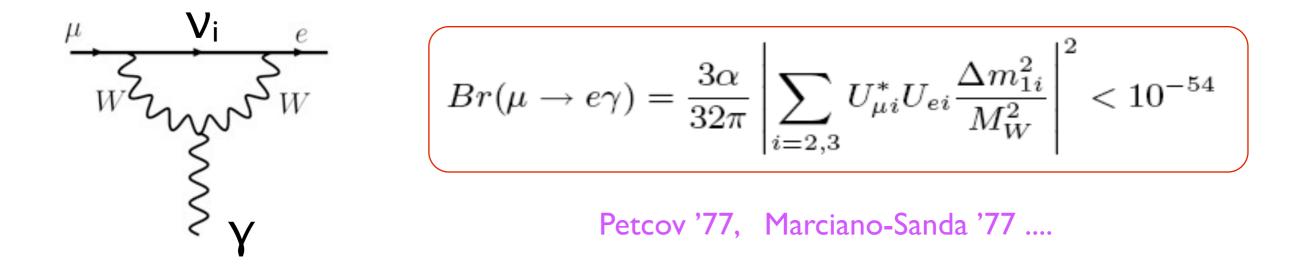
Snowmass 2021 mini-workshop CLFV - Tau Decays and Transitions July 23 2020

Theory overview: CLFV at the T scale

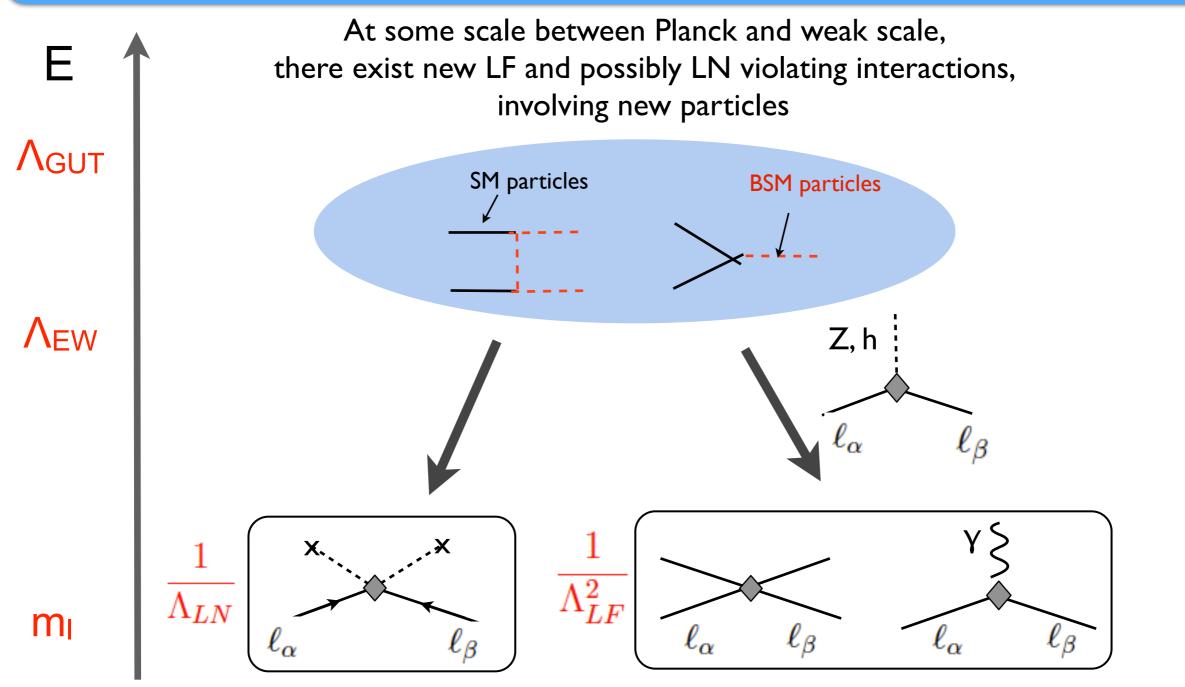
Vincenzo Cirigliano Los Alamos National Laboratory


Outline

- Introduction: LFV, BSM physics & the role of tau decays
- EFT description of LFV tau decays:
 - discovery potential & model-diagnosing power
 - LFV couplings of the Higgs
- Conclusion and outlook

Introduction: LFV and BSM physics

Charged LFV and BSM physics


- ν oscillations $\Rightarrow L_{e,\mu,\tau}$ not conserved
- In SM + massive V, effective CLFV vertices are tiny (GIM)

CLFV processes are an extremely clean probe of "BvSM" physics

$$\mathcal{L}_{\nu \mathrm{SM}} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{
u-\mathrm{mass}}$$
 dim-4 Dirac or
dim5 Majorana

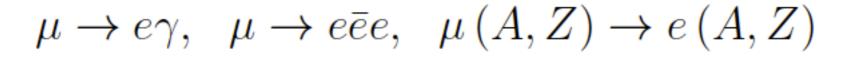
The underlying picture

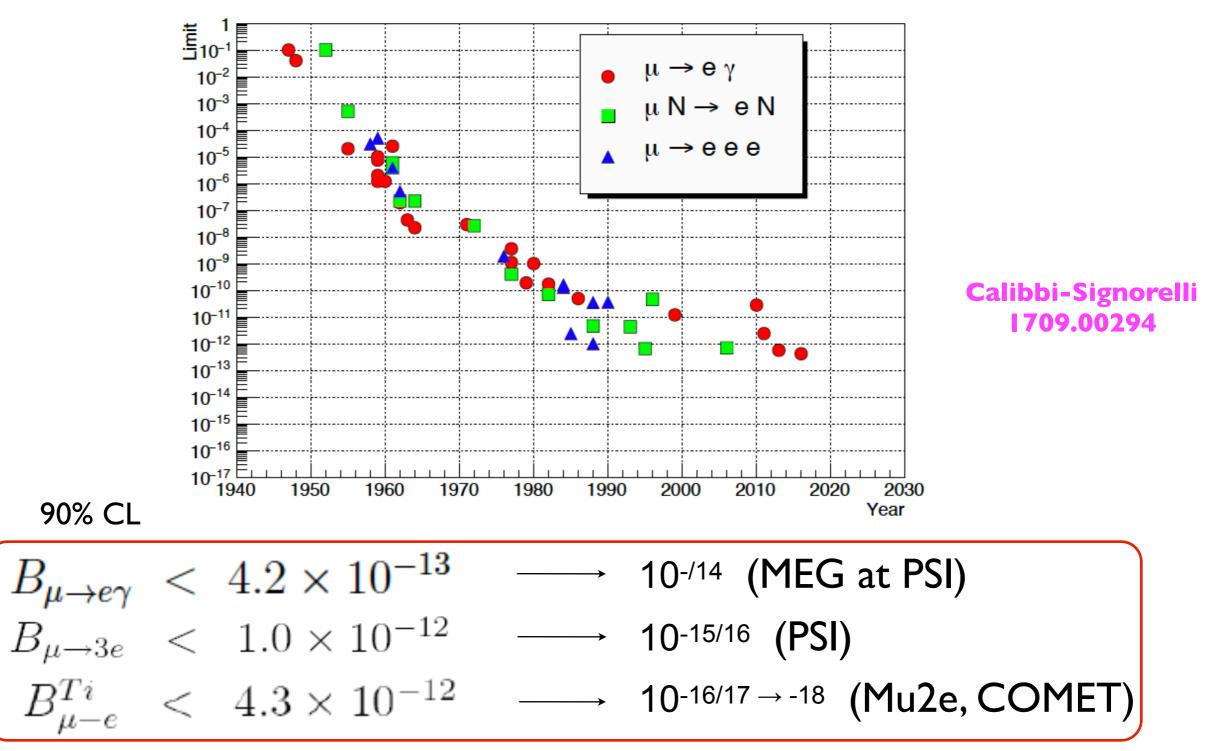
Each scenario generates a specific pattern of operators, controlling v mass (dim5), LFV processes (dim6), LNV processes (dim7,9) We can probe the underlying physics through a combination of low-energy and collider searches

CLFV probes

• Low energy: decays of μ , τ , and mesons

$$\begin{split} \mu \to e\gamma, \quad \mu \to e\bar{e}e, \quad \mu\left(A,Z\right) \to e\left(A,Z\right) \\ \tau \to \ell\gamma, \quad \tau \to \ell_{\alpha}\bar{\ell}_{\beta}\ell_{\beta}, \ \tau \to \ell Y \qquad Y = P, S, V, P\bar{P}, \dots \end{split}$$

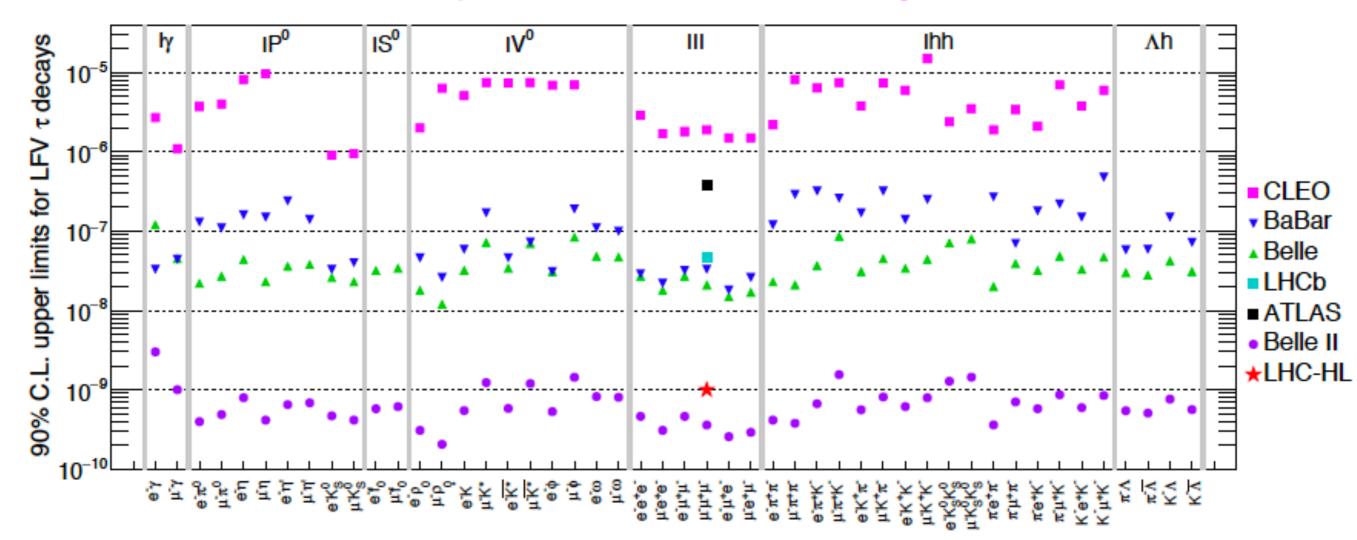

 $K \rightarrow \pi \mu e; B \rightarrow K \mu \tau, K \mu e; B_s \rightarrow \mu \tau, \mu e, quarkonia, ... (not discussed in this talk)$


• High Energy:

$$-HC \qquad \begin{array}{ccc} p \, p \ \rightarrow \ R \rightarrow \ \ell_{\alpha} \bar{\ell}_{\beta} \ + \ X \\ p \, p \ \rightarrow \ \ell_{\alpha} \bar{\ell}_{\beta} \ + \ X \end{array} \qquad \begin{array}{c} R = Z', h, \tilde{\nu}, \dots \\ p \, p \ \rightarrow \ \ell_{\alpha} \bar{\ell}_{\beta} \ + \ X \end{array}$$

 $\begin{array}{ll} \text{HERA,} & e \, p \ \rightarrow \ \ell \, + \, X \\ \text{EIC} & \end{array}$

Muon processes



Tau decays

 $\tau \to \ell \gamma, \ \tau \to \ell_{\alpha} \bar{\ell}_{\beta} \ell_{\beta}, \ \tau \to \ell Y \quad Y = P, S, V, P \bar{P}, \dots$

HFLAG-tau → Belle-II Physics Book 1808.10567; Flavor @ HL/HE LHC 1912.07638

Rich(er) landscape! Access to hadronic modes. 10-9 (or better) sensitivities at Belle-II, LHC-HL, and other future facilities

Discovering & diagnosing

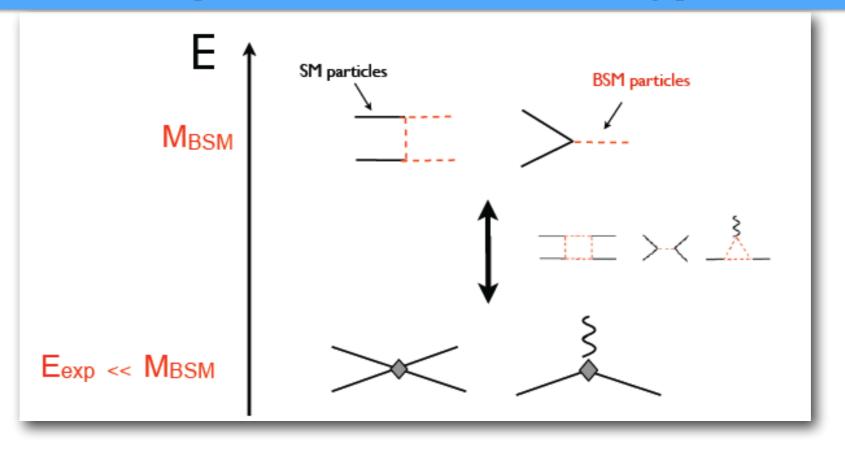
- Redundancy of searches is very important as various probes serve as:
- **Discovery tools** (observation \Rightarrow BSM physics)
- Diagnosing tools (correlations ⇒ reconstruct the underlying dynamics)
 - What type of "mediator"? (structure of model)

 $\mu \rightarrow 3e$ vs $\mu \rightarrow e\gamma$ vs $\mu \rightarrow e$ conversion

- $\tau \rightarrow 3I$ vs $\tau \rightarrow I\gamma$ vs $\tau \rightarrow (e,\mu) + had$. vs $h \rightarrow \tau(e,\mu)$
- What sources of flavor breaking?

 $\mu \rightarrow e$ vs $\tau \rightarrow \mu$ vs $\tau \rightarrow e$

Discovering & diagnosing


- Redundancy of searches is very important as various probes serve as:
- **Discovery tools** (observation \Rightarrow BSM physics)
- Diagnosing tools (correlations \Rightarrow reconstruct the underlying dynamics)
- Two (not mutually exclusive) approaches:
 - I. Concrete models: predict BRs and correlations
 - 2. EFT: characterize signatures of classes of models (less detailed)

I will discuss T decays mostly within approach 2.

Vast literature → omissions unavoidable, but not intentional

LFV tau decays in EFT

Low E phenomenology: EFT

• At low energy, LFV dynamics described by local operators

• Each UV model generates a specific pattern of LFV operators

Rich structure at dimension six

• Effective Lagrangian at the tau scale, induced by dim-6 at high scale

$$\mathcal{L}_{eff} = \mathcal{L}_{eff}^{(D)} + \mathcal{L}_{eff}^{(4\ell)} + \mathcal{L}_{eff}^{(\ell q)} + \mathcal{L}_{eff}^{(G)}$$

Black-Han-He-Sher hep-ph/0206056

Dassinger et al, 0707.0988 Matsuzuki-Sanda 0711.0792

```
Celis-VC-Passemar
1403.5781
```

....

$$\mathcal{L}_{eff}^{(D)} = -\frac{m_{\tau}}{\Lambda^2} \left\{ \left(C_{DR} \,\bar{\mu} \,\sigma^{\rho\nu} \,P_L \,\tau + C_{DL} \,\bar{\mu} \,\sigma^{\rho\nu} \,P_R \,\tau \right) F_{\rho\nu} + \text{h.c.} \right\}$$

$$\mathcal{L}_{eff}^{(4\ell)} = -\frac{1}{\Lambda^2} \left\{ C_{\text{SLL}} \left(\bar{\mu} P_L \tau \right) \left(\bar{\mu} P_L \mu \right) + C_{\text{SRR}} \left(\bar{\mu} P_R \tau \right) \left(\bar{\mu} P_R \mu \right) \right. \\ \left. + C_{\text{VLL}} \left(\bar{\mu} \gamma^{\mu} P_L \tau \right) \left(\bar{\mu} \gamma_{\mu} P_L \mu \right) + C_{\text{VRR}} \left(\bar{\mu} \gamma^{\mu} P_R \tau \right) \left(\bar{\mu} \gamma_{\mu} P_R \mu \right) \right. \\ \left. + C_{\text{VLR}} \left(\bar{\mu} \gamma^{\mu} P_L \tau \right) \left(\bar{\mu} \gamma_{\mu} P_R \mu \right) + C_{\text{VRL}} \left(\bar{\mu} \gamma^{\mu} P_R \tau \right) \left(\bar{\mu} \gamma_{\mu} P_L \mu \right) + \text{h.c.} \right\}$$

Rich structure at dimension six

• Effective Lagrangian at the tau scale, induced by dim-6 at high scale

$$\mathcal{L}_{eff} = \mathcal{L}_{eff}^{(D)} + \mathcal{L}_{eff}^{(4\ell)} + \mathcal{L}_{eff}^{(\ell q)} + \mathcal{L}_{eff}^{(G)}$$

Black-Han-He-Sher hep-ph/0206056

Dassinger et al, 0707.0988 Matsuzuki-Sanda 0711.0792

$$\begin{split} \mathcal{L}_{eff}^{(\ell q)} &= -\frac{1}{\Lambda^2} \sum_{q=u,d,s} \left\{ \left(\mathbf{C}_{\mathrm{VR}}^{\mathrm{q}} \,\bar{\mu} \,\gamma^{\rho} \,P_R \,\tau \,+ \mathbf{C}_{\mathrm{VL}}^{\mathrm{q}} \,\bar{\mu} \,\gamma^{\rho} \,P_L \,\tau \right) \bar{q} \,\gamma_{\rho} \,q \right. \begin{array}{c} \begin{array}{c} \text{Celis-VC-Passemar} \\ 1403.5781 \\ \dots \end{array} \\ &+ \left(\mathbf{C}_{\mathrm{AR}}^{\mathrm{q}} \,\bar{\mu} \,\gamma^{\rho} \,P_R \,\tau + \mathbf{C}_{\mathrm{AL}}^{\mathrm{q}} \,\bar{\mu} \,\gamma^{\rho} \,P_L \,\tau \right) \bar{q} \,\gamma_{\rho} \gamma_5 \,q \\ &+ m_{\tau} m_q G_F \, \left(\mathbf{C}_{\mathrm{SR}}^{\mathrm{q}} \,\bar{\mu} \,P_L \,\tau + \mathbf{C}_{\mathrm{SL}}^{\mathrm{q}} \,\bar{\mu} \,P_R \,\tau \right) \bar{q} \,q \\ &+ m_{\tau} m_q G_F \, \left(\mathbf{C}_{\mathrm{PR}}^{\mathrm{q}} \,\bar{\mu} \,P_L \,\tau + \mathbf{C}_{\mathrm{PL}}^{\mathrm{q}} \,\bar{\mu} \,P_R \,\tau \right) \bar{q} \,\gamma_5 \,q \\ &+ m_{\tau} m_q G_F \, \left(\mathbf{C}_{\mathrm{TR}}^{\mathrm{q}} \,\bar{\mu} \,\sigma^{\rho\nu} \,P_L \,\tau + \mathbf{C}_{\mathrm{TL}}^{\mathrm{q}} \,\bar{\mu} \,\sigma^{\rho\nu} \,P_R \,\tau \right) \bar{q} \,\sigma_{\rho\nu} \,q + \mathrm{h.c.} \right\} \\ \mathcal{L}_{eff}^{(G)} &= - \frac{m_{\tau} G_F}{\Lambda^2} \frac{\beta_L}{4\alpha_s} \left\{ \left(\mathbf{C}_{\mathrm{GR}} \,\bar{\mu} \,P_L \,\tau + \mathbf{C}_{\mathrm{GL}} \,\bar{\mu} \,P_R \,\tau \right) \,G_{\rho\nu}^a G_a^{\rho\nu} \right\} \end{split}$$

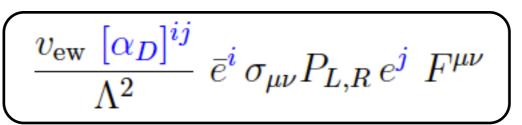
 $+\left(C_{\widetilde{G}R}\,\bar{\mu}\,P_L\,\tau+C_{\widetilde{G}L}\,\bar{\mu}\,P_R\,\tau\right)\,G^a_{\mu\nu}\widetilde{G}^{\mu\nu}_a+\text{h.c.}\left\},$

Rich structure at dimension six

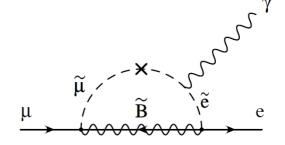
• Effective Lagrangian at the tau scale, induced by dim-6 at high scale

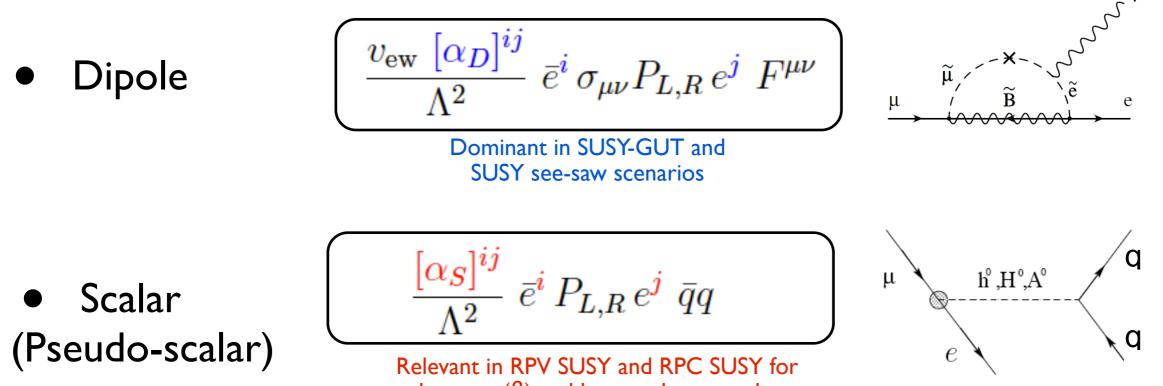
$$\mathcal{L}_{eff} = \mathcal{L}_{eff}^{(D)} + \mathcal{L}_{eff}^{(4\ell)} + \mathcal{L}_{eff}^{(\ell q)} + \mathcal{L}_{eff}^{(G)}$$

Black-Han-He-Sher hep-ph/0206056

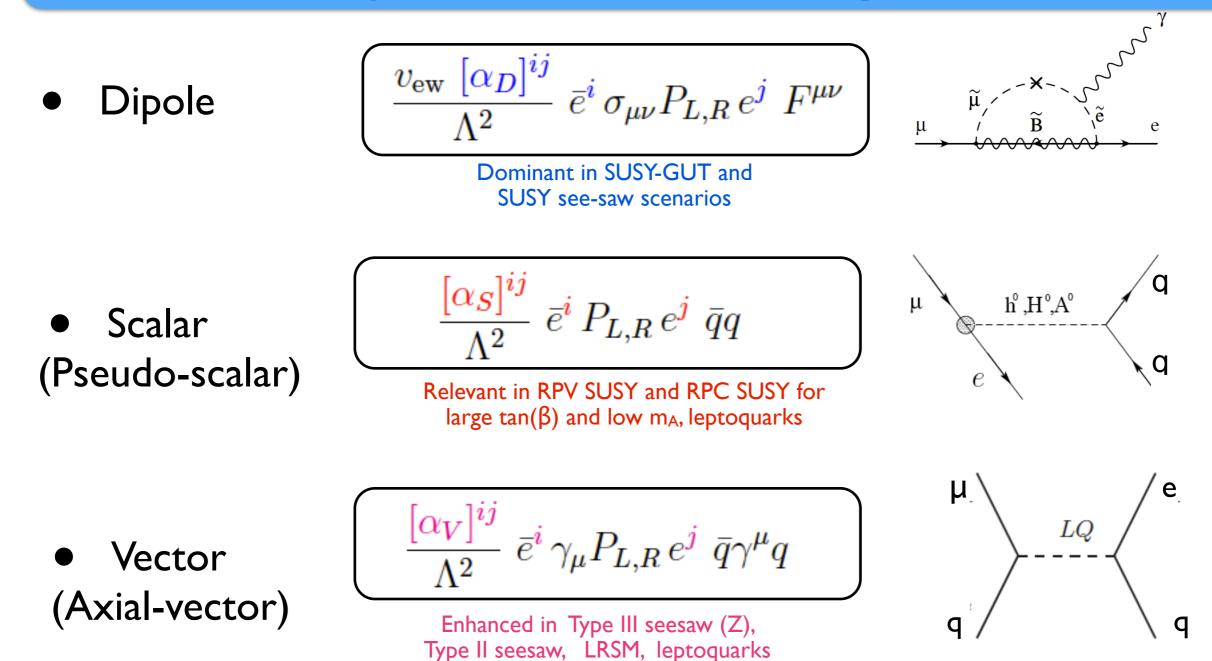

Dassinger et al, 0707.0988 Matsuzuki-Sanda 0711.0792

$$\begin{split} \mathcal{L}_{eff}^{(\ell q)} &= -\frac{1}{\Lambda^2} \sum_{q=u,d,s} \left\{ \left(\mathbf{C}_{\mathrm{VR}}^{\mathbf{q}} \,\bar{\mu} \,\gamma^{\rho} \,P_R \,\tau \,+ \mathbf{C}_{\mathrm{VL}}^{\mathbf{q}} \,\bar{\mu} \,\gamma^{\rho} \,P_L \,\tau \,\right) \bar{q} \,\gamma_{\rho} \,q \begin{array}{c} \overset{\text{Celis-VC-Passemar}}{\mathbf{1403.5781}} \\ & \\ & + \left(\mathbf{C}_{\mathrm{AR}}^{\mathbf{q}} \,\bar{\mu} \,\gamma^{\rho} \,P_R \,\tau + \mathbf{C}_{\mathrm{AL}}^{\mathbf{q}} \,\bar{\mu} \,\gamma^{\rho} \,P_L \,\tau \right) \bar{q} \,\gamma_{\rho} \gamma_{5} \,q \\ & + m_{\tau} m_{q} G_F \,\left(\mathbf{C}_{\mathrm{SR}}^{\mathbf{q}} \,\bar{\mu} \,P_L \,\tau + \mathbf{C}_{\mathrm{SL}}^{\mathbf{q}} \,\bar{\mu} \,P_R \,\tau \right) \bar{q} \,\gamma_{5} \,q \\ & + m_{\tau} m_{q} G_F \,\left(\mathbf{C}_{\mathrm{PR}}^{\mathbf{q}} \,\bar{\mu} \,P_L \,\tau + \mathbf{C}_{\mathrm{PL}}^{\mathbf{q}} \,\bar{\mu} \,P_R \,\tau \right) \bar{q} \,\gamma_{5} \,q \\ & + m_{\tau} m_{q} G_F \,\left(\mathbf{C}_{\mathrm{TR}}^{\mathbf{q}} \,\bar{\mu} \,\sigma^{\rho\nu} P_L \,\tau + \mathbf{C}_{\mathrm{TL}}^{\mathbf{q}} \,\bar{\mu} \,\sigma^{\rho\nu} \,P_R \,\tau \right) \bar{q} \,\sigma_{\rho\nu} \,q + \mathrm{h.c.} \right\} \end{split}$$

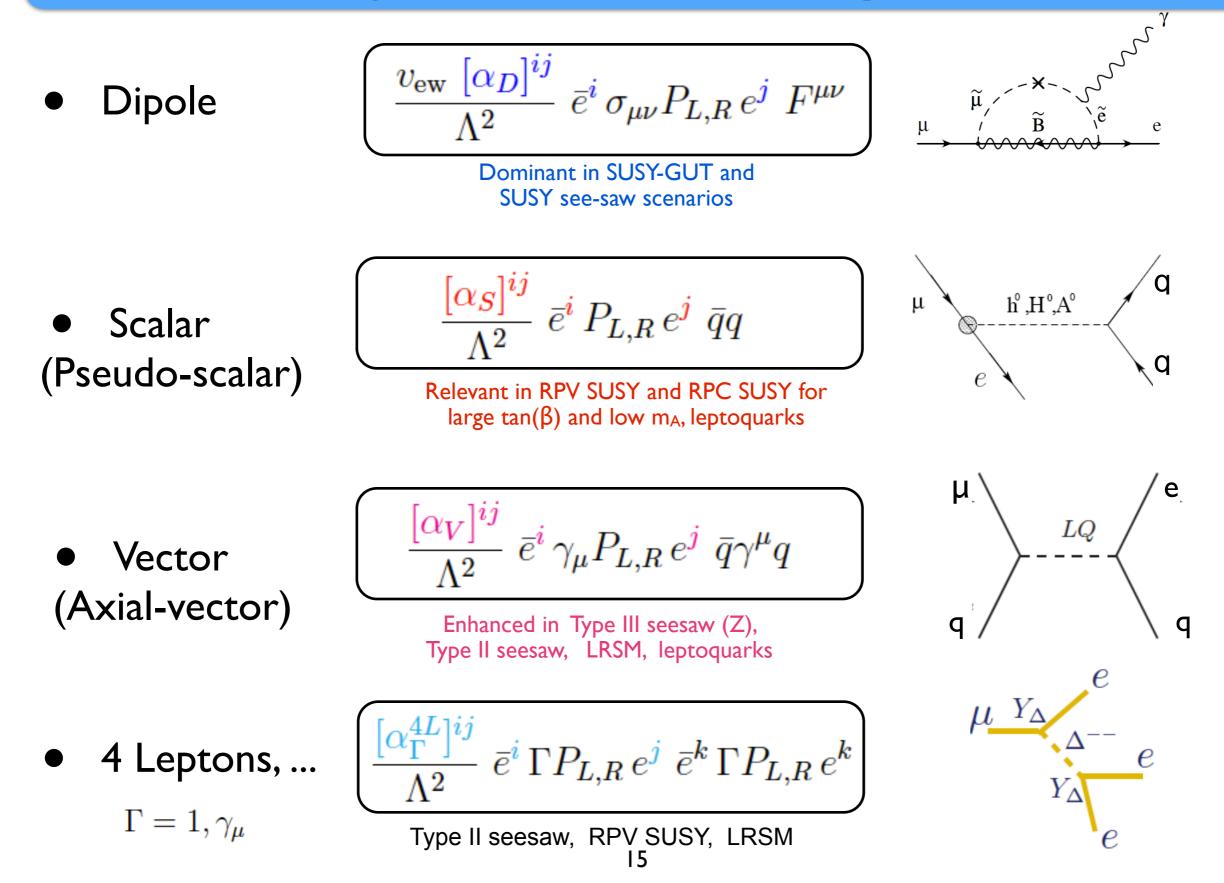

Connection with high scale EFT (SMEFT) known


Crivellin-Davidson-Pruna-Signer 1702.03020 Dekens-Stoffer 1908.05295

• Dipole



Dominant in SUSY-GUT and SUSY see-saw scenarios



large tan(β) and low m_A, leptoquarks

15

What can we extract from data?

- What effective scale Λ are experiments probing?
- If LFV decays observed, what is the relative strength of various operators ($\alpha_D vs \alpha_S \dots$)? \rightarrow Mediators, mechanism
- If LFV decays observed, what is the flavor structure of the couplings $([\alpha_D]^{e\mu} vs \ [\alpha_D]^{\tau\mu}...)? \rightarrow Sources of flavor breaking$

(Only briefly discussed in this talk)

Reach in Λ

• LFV BRs scale as

$$\mathsf{BR}_{\alpha\to\beta} \sim (v_{\mathsf{EVV}}/\Lambda)^4 * (\alpha_n)_{\alpha\beta^2}$$

• Current limits on $\mu \rightarrow e\gamma$ and $\tau \rightarrow \mu\gamma$ imply

$$\Lambda/\sqrt{[\alpha_D]^{\mu e}} > 3.4 \times 10^4 \text{ TeV}$$
$$\Lambda/\sqrt{[\alpha_D]^{\tau \mu}} > 5.7 \times 10^2 \text{ TeV}$$

LFV signals in lepton decays are within reach of planned searches, if new physics near TeV scale and reasonable mixing parameters. Ask what can we learn about the underlying dynamics

Diagnosing power: the TLFV matrix

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$	
$O_{S,V}^{4\ell}$	✓	—	—	—	_	—	
OD	✓	✓	\checkmark	\checkmark	_	—	
O_V^q	—	—	1	1	_	—	
O_S^q	—	—	✓	1	—	—	
O _{GG}	—	—	\checkmark	\checkmark	—	—	
$O^{\mathbf{q}}_{\mathbf{A}}$	—	—	—	—	1	✓	
O_P^q	—	—	—	—	1	✓	
$O_{G\widetilde{G}}$	—	_	_	_	_	✓	

•• Tree-level contributions to $\tau \rightarrow \mu$ processes from low-scale operators Celis-VC-Passemar 1403.5781

Ī

Low-scale operators

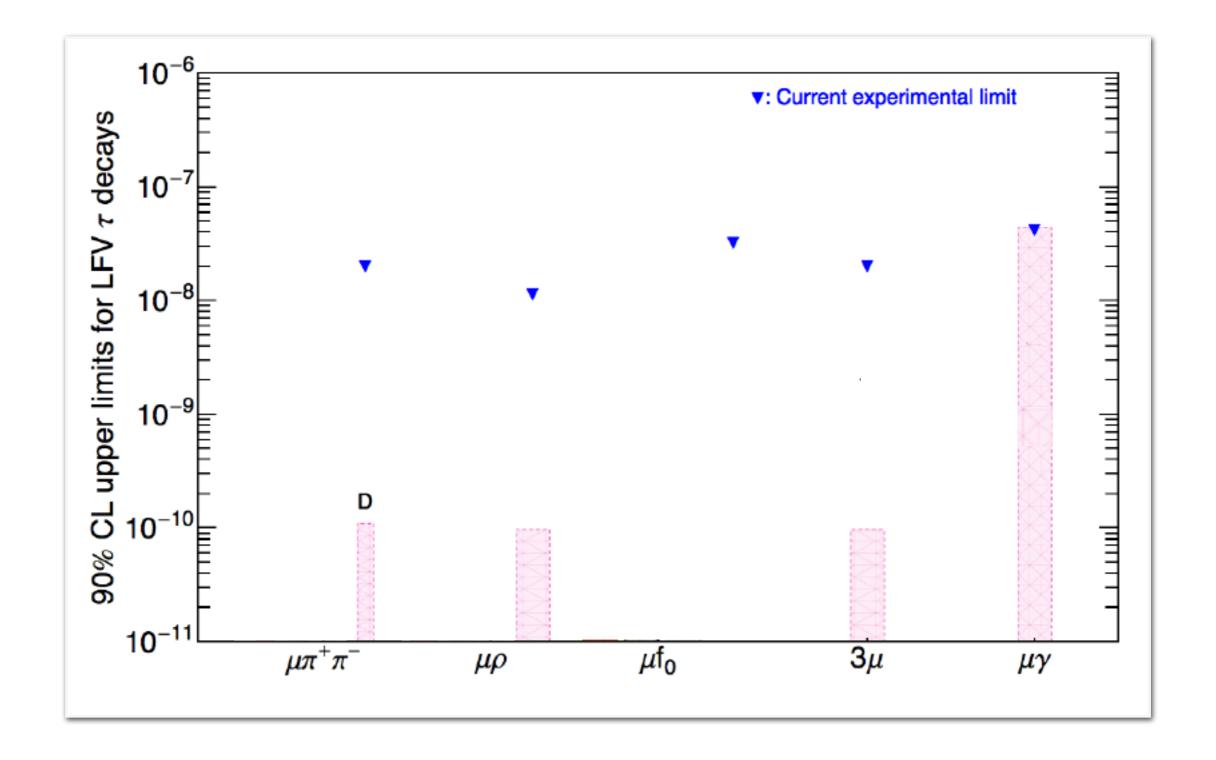
Diagnosing power: the TLFV matrix

	$\tau \rightarrow 3\mu$	$\tau \to \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$	•••
$O_{S,V}^{4\ell}$	✓	_	_	_	_	_	
OD	✓	✓	\checkmark	\checkmark	_	—	
O_V^q	—	—	✓	1	—	—	
$O_{\mathbf{S}}^{\mathbf{q}}$	—	—	✓	1	—	—	
O _{GG}	—	—	\checkmark	\checkmark	—	—	
O_A^q	—	—	—	—	1	✓	
O_P^q	—	—	—	—	\checkmark	✓	
$O_{G\widetilde{G}}$	_	_	_	_	_	✓	
1	i				<u>.</u>		<u>1</u>

••• Tree-level contributions to $\tau \rightarrow \mu$ processes from low-scale operators Celis-VC-Passemar 1403.5781

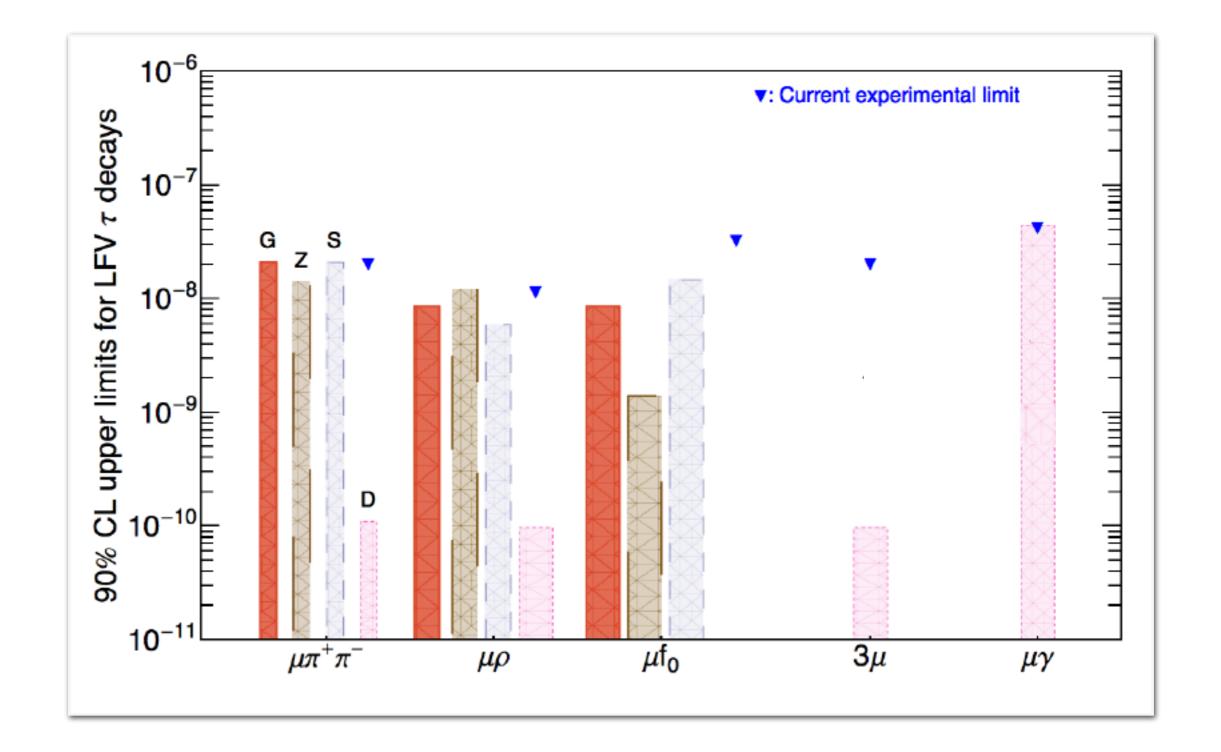
• While there may be experimental 'golden modes' $(\tau \rightarrow \mu\gamma, \tau \rightarrow 3\mu, ?)$, the notion of `best probe' (= process with largest rate) is model dependent

Diagnosing power: the TLFV matrix

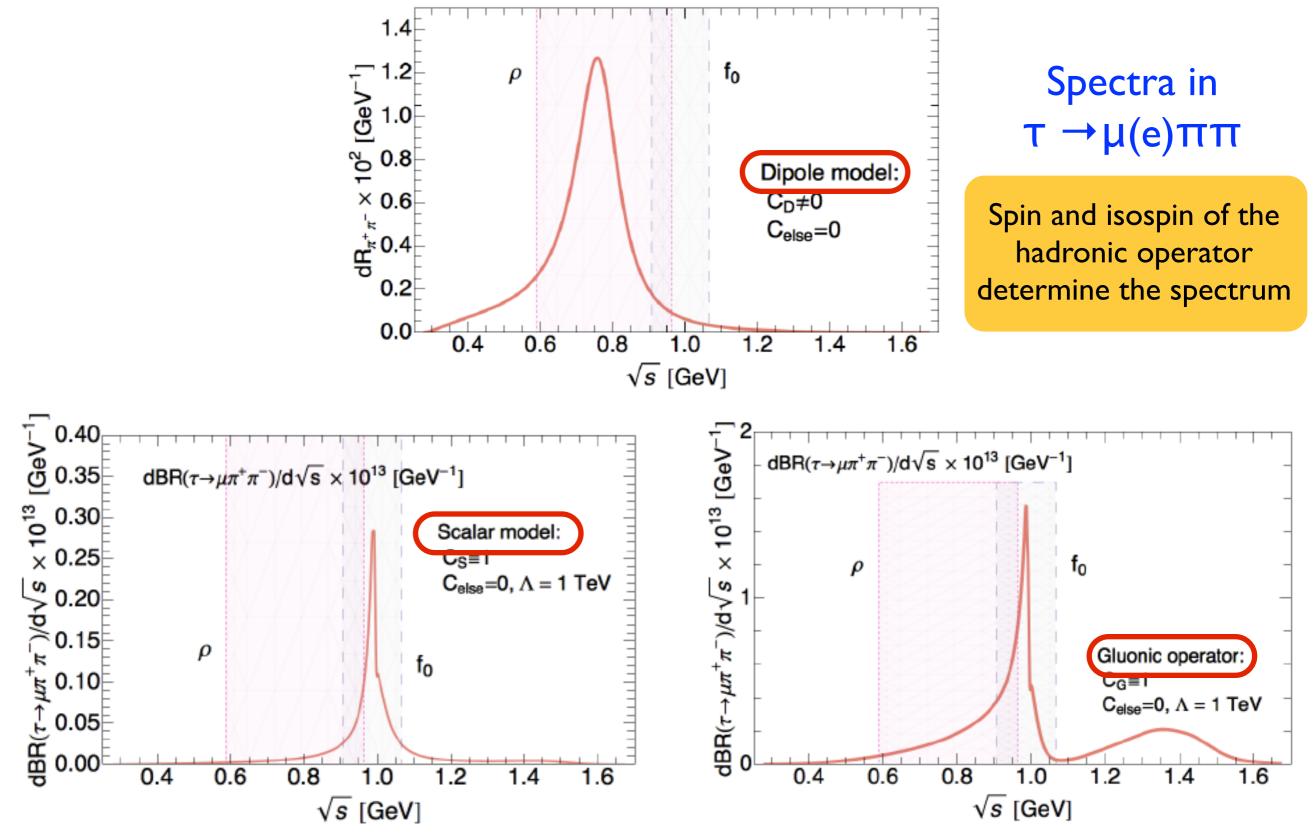

	$\tau \rightarrow 3\mu$	$\tau ightarrow \mu \gamma$	$\tau \to \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	✓	—	_	_	_	_
OD	✓	\checkmark	\checkmark	\checkmark	—	_
O_V^q	—	—	✓	1	—	_
O_S^q	_	—	1	1	—	_
O _{GG}	_	_	\checkmark	✓	_	_
O_A^q	_	_	_	_	1	✓
O_P^q	_	_	_	_	✓	1
$O_{G\widetilde{G}}$	—	—	—	—	—	~

Tree-level contributions to $\tau \rightarrow \mu$ processes from low-scale operators

- There is life beyond leptonic and radiative decays!
- Hadronic decays sensitive to large number of operators, but need reliable form factors and decay constants
- Progress in $\tau \rightarrow \mu(e)\pi\pi$ using dispersive techniques Celis-VC-Passemar

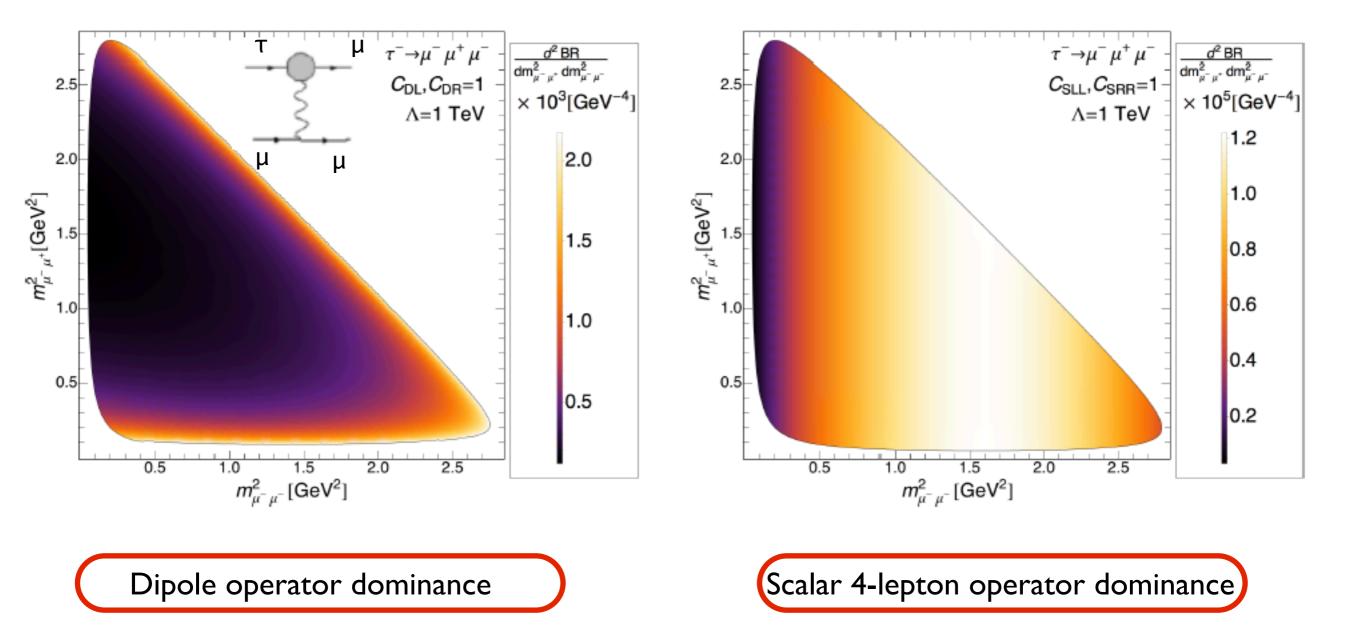

309.3564

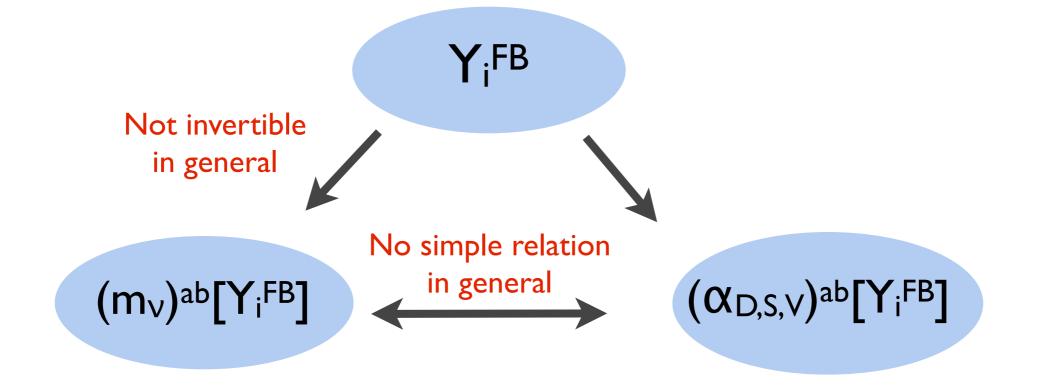
• Two basic handles: I) Pattern of BRs


Dipole only (D)

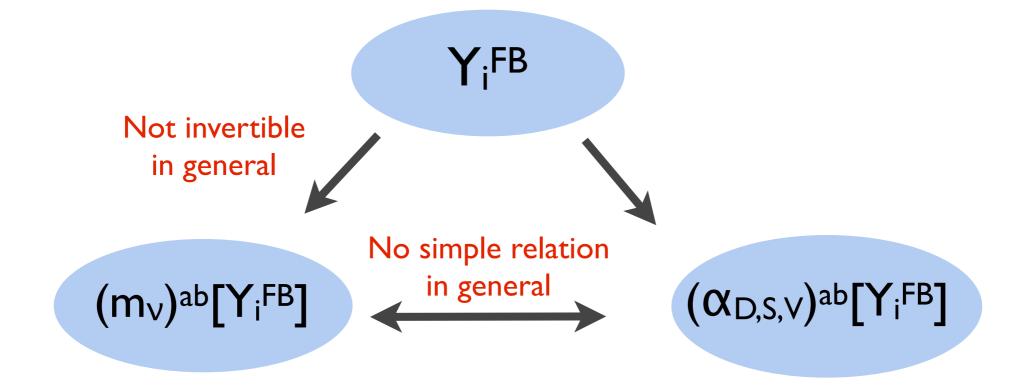
• Two basic handles: I) Pattern of BRs

Gluon, Vector, Scalar (G,Z,S)

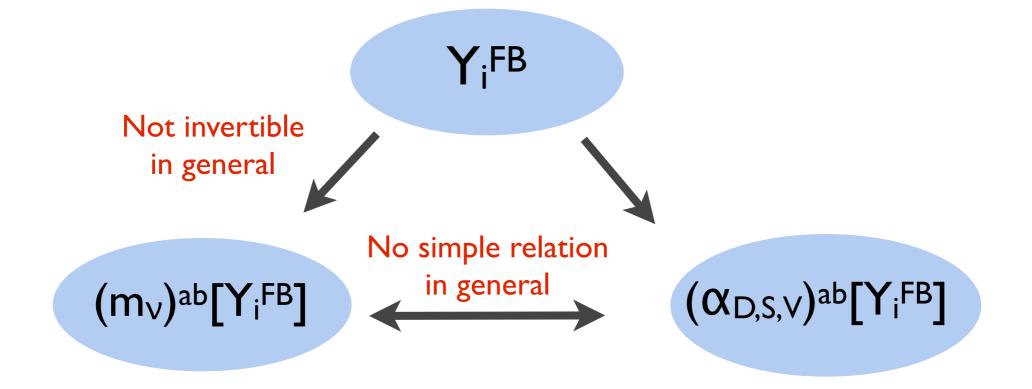

• Two basic handles: 2) differential distributions


• Two basic handles: 2) differential distributions

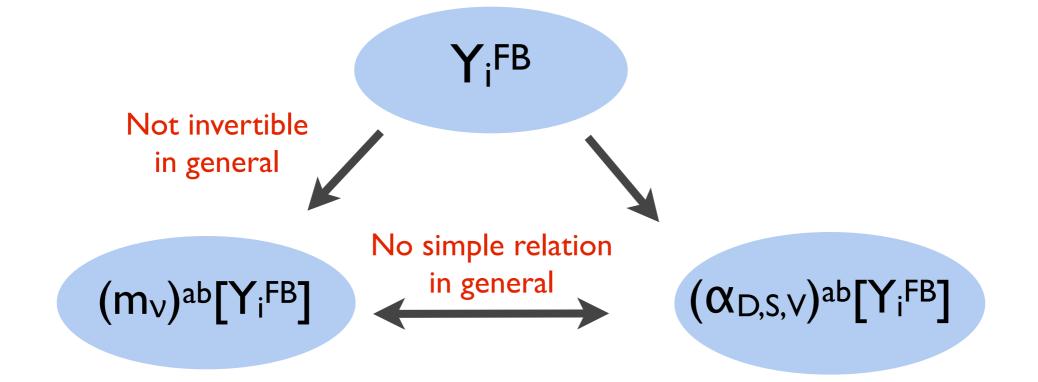
Dalitz plot in $\tau \rightarrow 3$ leptons


Dassinger et al, 0707.0988 Matsuzuki-Sanda 0711.0792 Celis-VC-Passemar 1403.5781

- Each model has its sources of flavor breaking Y_i^{FB} (Yukawa-type, mass matrices of heavy states, ...)
- Y_i^{FB} leave imprint in m_v and CLFV effective couplings $\alpha_{D,V,S,...}$


- Each model has its sources of flavor breaking Y_i^{FB} (Yukawa-type, mass matrices of heavy states, ...)
- Y_i^{FB} leave imprint in m_v and CLFV effective couplings $\alpha_{D,V,S,...}$

Aside: Minimal Lepton Flavor Violation tries to remedy this issue. No unique realization


VC-Grinstein-Isidori-Wise '05 Davidson-Palorini '06 Gavela-Hambye-Hernandez-Hernandez '09 Alonso-Isidore-Merlo-Munoz-Nardi '11

- Each model has its sources of flavor breaking Y_i^{FB} (Yukawa-type, mass matrices of heavy states, ...)
- Y_i^{FB} leave imprint in m_v and CLFV effective couplings $\alpha_{D,V,S,...}$

• CLFV processes probe the structure of Y_i^{FB} Cleanest test-ground: $\mu \rightarrow e\gamma$ vs $\tau \rightarrow \mu\gamma$ vs $\tau \rightarrow e\gamma$

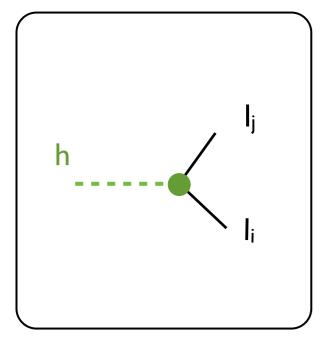
- Each model has its sources of flavor breaking Y_i^{FB} (Yukawa-type, mass matrices of heavy states, ...)
- Y_i^{FB} leave imprint in m_v and CLFV effective couplings $\alpha_{D,V,S,...}$

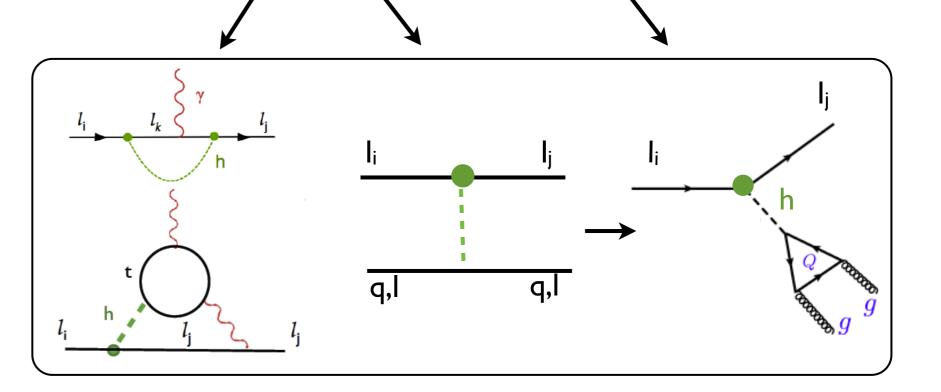
- MLFV: $BR(\mu \rightarrow e\gamma) / BR(\tau \rightarrow \mu\gamma) \sim 10^{-2}$
- GUT models: BR($\mu \rightarrow e\gamma$) / BR($\tau \rightarrow \mu\gamma$) ~ $|V_{us}|^6$ ~ 10-4

Barbieri-Hall-Strumia '95, VC-Grinstein-Isidori-Wise '06

Probing LFV Higgs couplings

• Simplest framework: LFV Yukawa couplings of the Higgs


$$\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} \left(\bar{L}_{L}^{i} e_{R}^{j} H \right) H^{\dagger} H \rightarrow -Y_{ij} \bar{e}_{L}^{i} e_{R}^{j} h$$
Goudelis-Lebedev-Park '11
Davidson-Grenier '10
...
Harnik-Kopp-Zupan '12
Blankenburg-Ellis-Isidori 12
McKeen-Pospelov-Ritz '12
...

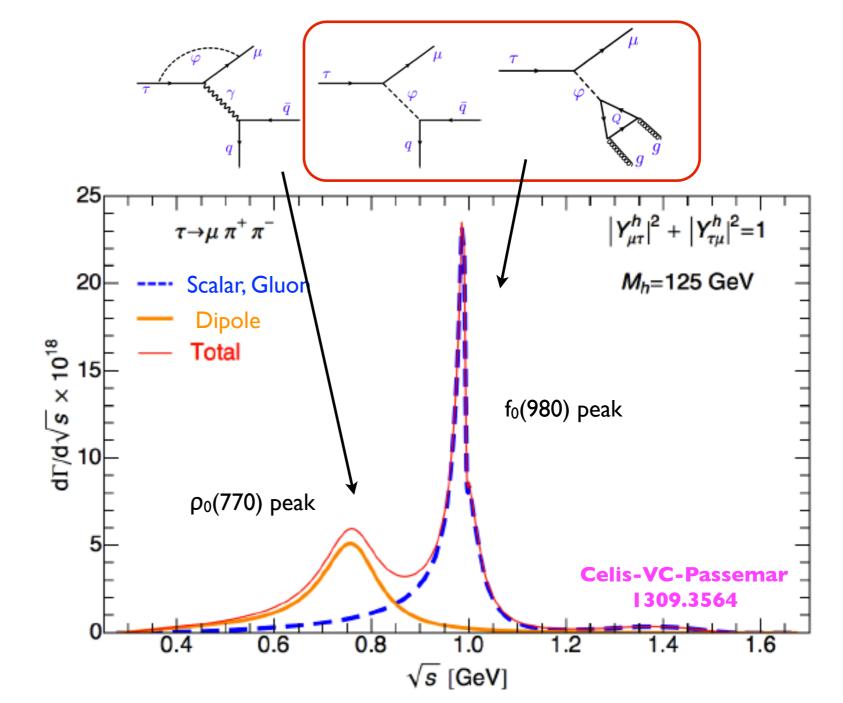

- Achieved in the SM-EFT through a single dim-6 operator that decouples lepton mass matrix from O(h) couplings
- Good starting point if new physics is heavy

Signatures at high and low energy

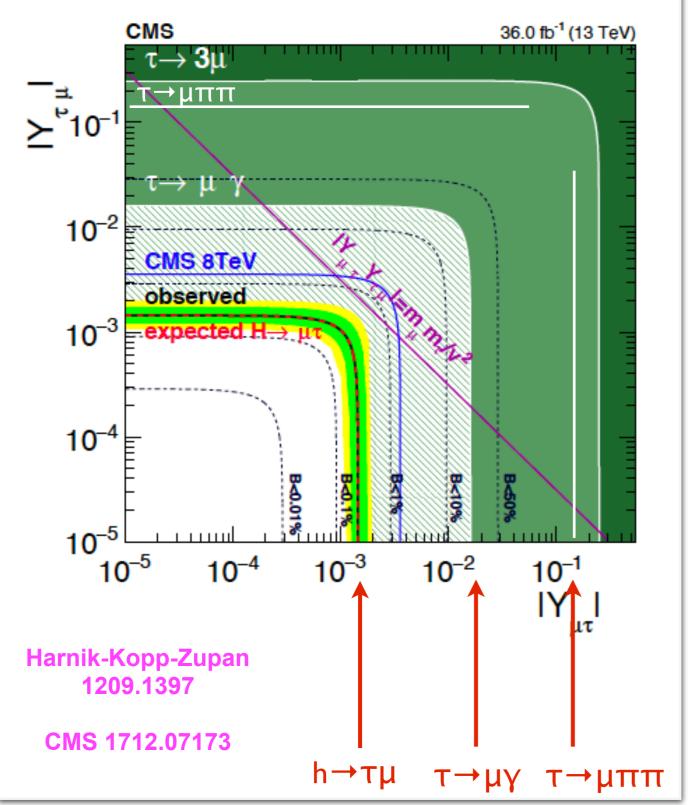
Dipole (D), Scalar 4-fermion (S), Gluon (G) operators

Higgs decay

τ→μγ	τ→μππ	τ→μππ
τ→3μ	τ→3μ	
τ→μππ	Dependence on light fermion Yukawa couplings Y _{u.d,s, µ}	


Pattern of LFV T decays

• Radiative mode dominates, followed by $\pi\pi$ and 3 lepton


$B(\tau \rightarrow \mu \pi^+\pi^-) / B(\tau \rightarrow \mu \gamma) = 0.7(1) \times 10^{-2}$

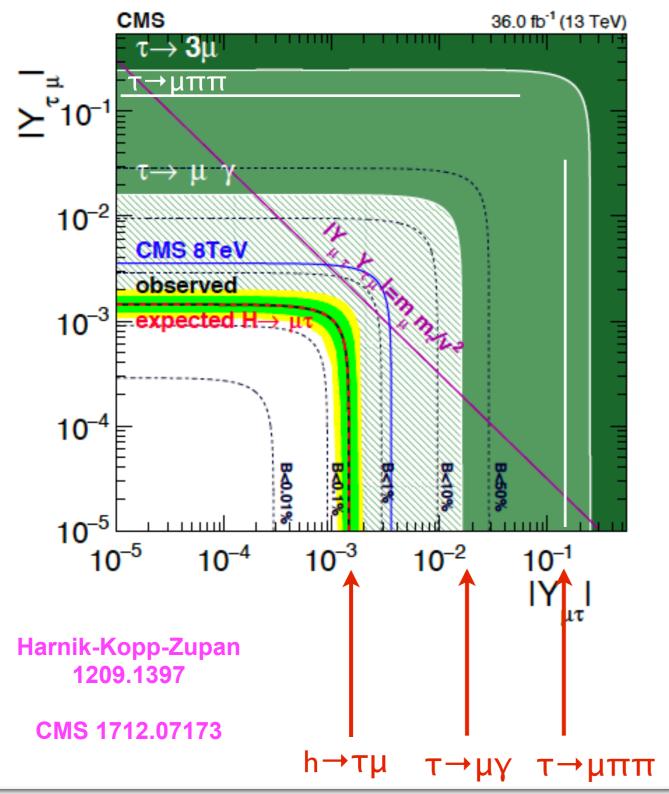
 T→µππ controlled by Higgs-specific combination of D, S, G
 → unique signature in ππ spectrum

Plot assumes SM values for $Y_{u.d,s}$, but strength of the f₀(980) peak depends on light quark Yukawas

T- μ sector: h vs T decays

- Assuming SM values for $Y_{u.d,s}$, current tau BRs (~10⁻⁽⁷⁻⁸⁾) imply $Y_{\tau\mu,\tau e} < 0.01-0.1$, which translates into BR(h $\rightarrow\mu\tau$) < 0.1
- LHC (CMS) limit BR(h→μτ)
 <0.25% (95%CL) is stronger:
 |Υ_{τμ,μτ}| < 0.00143

T- μ sector: h vs T decays



- Assuming SM values for $Y_{u.d,s}$, current tau BRs (~10⁻⁽⁷⁻⁸⁾) imply $Y_{\tau\mu,\tau e} < 0.01$ -0.1, which translates into BR(h $\rightarrow\mu\tau$) < 0.1
- LHC (CMS) limit BR(h→μτ)
 <0.25% (95%CL) is stronger:
 |Υ_{τμ,μτ}| < 0.00143
- If use SM values for Y_{u.d,s}, CMS bound implies

$$\begin{split} &\mathsf{B}(\tau \! \rightarrow \! \mu \gamma) < \ 6.7 \times \! 10^{-10} \\ &\mathsf{B}(\tau \! \rightarrow \! \mu \pi^{+} \pi^{-}) < 4.5 \times \! 10^{-12} \\ &\mathsf{B}(\tau \! \rightarrow \! \mu \pi^{0} \pi^{0}) < 1.4 \times \! 10^{-12} \end{split}$$

Challenging target for next generation

T-μ sector: h vs T decays

- Assuming SM values for $Y_{u.d,s}$, current tau BRs (~10⁻⁽⁷⁻⁸⁾) imply $Y_{\tau\mu,\tau e} < 0.01-0.1$, which translates into BR(h $\rightarrow\mu\tau$) < 0.1
- LHC (CMS) limit BR(h→μτ)
 <0.25% (95%CL) is stronger:
 |Υ_{τμ,μτ}| < 0.00143

 $B(\tau \rightarrow \mu \gamma) < 6.7 \times 10^{-10}$ $B(\tau \rightarrow \mu \pi^{+} \pi^{-}) < 9.1 \times 10^{-9}$ $B(\tau \rightarrow \mu \pi^{0} \pi^{0}) < 4.5 \times 10^{-9}$

Within reach of next generation

Conclusions & Outlook

- Charged LFV processes are great probes of new physics
 - Discovery tools: clean, high scale reach
 - Model-diagnosing tools: mediators, sources of flavor breaking
- Tau decays offer a rich arena to discover and diagnose CLFV
 - In general, no theoretical 'golden mode'
 - Besides $\tau \rightarrow \mu\gamma$, $\tau \rightarrow 3\mu$, hadronic modes such as $\tau \rightarrow \mu(e)\pi\pi$ can be quite interesting (e.g. imprint of Higgs couplings) and are relatively clean theoretically

Looking forward to the next decade:

- * I-2 (3-4) orders of magnitude improvement in τ (µ) processes
- ★ Colliders (LHC, EIC) can play a significant role (h → $\tau\mu$, e→ τ)