

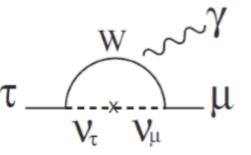
Tau LFV decays at Super Tau-Charm Facility

Xiaorong Zhou

(on behalf of STCF working group) University of Science and Technology of China

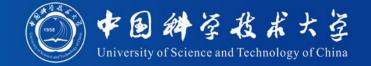
Snowmass, 2020.7.23

1


Lepton Flavor Conservation

- In quark sector: flavor mixing is well established
- Neutrino mixing: =>lepton flavor symmetry is violated (a sign of LFV beyond the SM!)

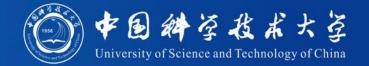
How about charged lepton sector??


- The charged LFV processes can occur through oscillations in loops
- Immeasurable small rates (10⁻⁵⁴-10⁻⁴⁹) for all the LFV μ and τ decays

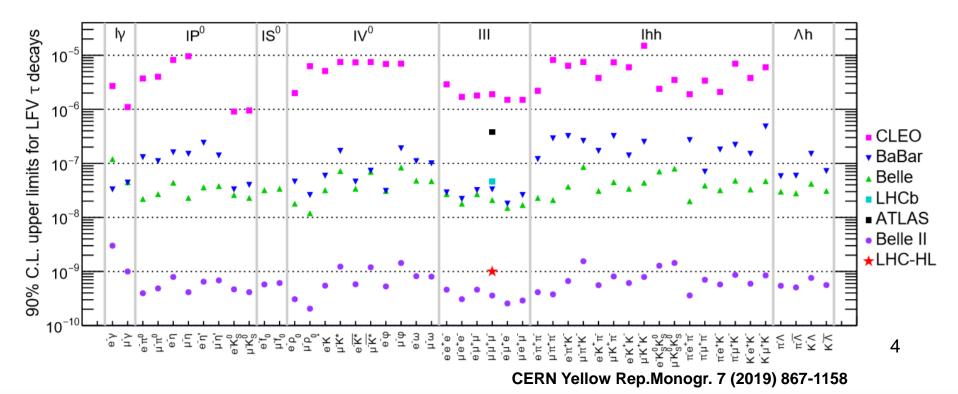
$$\mathfrak{B}(l_1 \to l_2 \gamma) \propto \alpha(\frac{\Delta m^2}{m_W^2})^2$$

Any observation of LFV in charged lepton will be a signature of NP !

LFV: a gateway to BSM

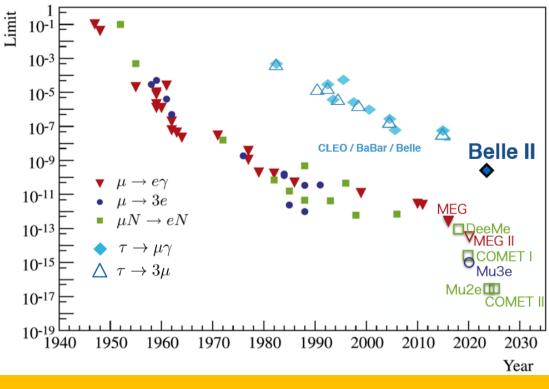


Many extensions of SM naturally introduces cLFV at order ~10⁻⁷
 -10⁻¹⁰ (an crucial place to test BSM)


Model	Ref.	τ→μγ	τ→μμμ	
SM + heavy majorana	PRD 66.034008	10 ⁻⁹	10-10	τ
Non-universal Z'	PLB 547(3)252	10 ⁻⁹	10 ⁻⁸	~
SUSY + seesaw	PRL 89:241802	10-10	10-7	X
SM + 4 th generation	arXiv.1006.530	10 ⁻⁸	10-8	τ
	6			$V_{\tau} = V_{\mu}$

Different cLFV experiments are necessary (as a part of 'global' programme): l_i → l_jγ, l_i → l_jl_kl_k, τ → lh...

τ LFV searches


- τ —the heaviest charged lepton:
 - Various decay modes for LFV search, include decay to hadron
 - Strength of interaction relate to new physics is naively expected to be mass-dependent
 - $\tau \rightarrow l\gamma$ and $\tau \rightarrow lll$ are golden mode, which are expected to have largest branching fraction

Evolution of limits

- Very rich experimental programme with substantial improvements expected in near future.
- Remarkable progress expected on Muon LFV searches.
- **B** factories expected to be the most powerful for tau LFV.

How about LFV at Super tau-charm factory?

6

Achieved Now

Proposed STCF in China

- Peaking luminosity $(0.5-1) \times 10^{35}$ cm⁻²s⁻¹ at 4 GeV
- Energy range $E_{cm} = 2-7 \text{ GeV}$
- **Potential** to increase luminosity and realize beam polarization

Beam Energy/GeV 2; 1-3.5tunable Current/A 1.5 Emittance($\varepsilon_x/\varepsilon_y$)/nm·rad 2.85/0.0285 β Function @ IP (β_x^*/β_y^*)/nm 65/0.68 v_x/v_y 30.52259316 / 28.53792761 Collision Angle(full θ)/mrad 60 Momentum compaction factor 0.001237 Energy spread 4.034e-4 Tune Shift ξ_y 0.06 (estimated) Hour-glass Factor 0.8 (estimated) Luminosity/ x 10 ³⁵ cm ⁻² s ⁻¹ 0.95 (estimated)	Tak Land	Circumference/m	707.258
Emittance $(\varepsilon_x/\varepsilon_y)$ /nm·rad 2.85/0.0285 β Function @ IP (β_x^*/β_y^*) /nm 65/0.68 v_x/v_y 30.52259316 / 28.53792761 Collision Angle(full θ)/mrad 60 Momentum compaction factor 0.001237 Energy spread 4.034e-4 Tune Shift ξ_y 0.06 (estimated) Hour-glass Factor 0.8 (estimated)	Bar the	Beam Energy/GeV	2; 1-3.5tunable
β Function @ IP $(\beta_x^*/\beta_y^*)/mm$ 65/0.68 v_x/v_y 30.52259316 / 28.53792761 Collision Angle(full θ)/mrad 60 Momentum compaction factor 0.001237 Energy spread 4.034e-4 Tune Shift ξ_y 0.06 (estimated) Hour-glass Factor 0.8 (estimated)		Current/A	1.5
v_x/v_y 30.52259316 / 28.53792761 Collision Angle(full θ)/mrad 60 Momentum compaction factor 0.001237 Energy spread 4.034e-4 Tune Shift ξ_y 0.06 (estimated) Hour-glass Factor 0.8 (estimated)		Emittance $(\varepsilon_x/\varepsilon_y)$ /nm·rad	2.85/0.0285
Collision Angle(full θ)/mrad60Momentum compaction factor0.001237Energy spread4.034e-4Tune Shift ξ_y 0.06 (estimated)Hour-glass Factor0.8 (estimated)		β Function @ IP (β_x^*/β_y^*) /mm	65/0.68
Momentum compaction factor 0.001237 Energy spread $4.034e-4$ Tune Shift ξ_y 0.06 (estimated)Hour-glass Factor 0.8 (estimated)		v_x / v_y	30.52259316 / 28.53792761
Energy spread $4.034e-4$ Tune Shift ξ_y 0.06 (estimated)Hour-glass Factor 0.8 (estimated)		Collision Angle(full θ)/mrad	60
Tune Shift ξ_y 0.06 (estimated)Hour-glass Factor0.8 (estimated)	A Contact	Momentum compaction factor	0.001237
Hour-glass Factor 0.8 (estimated)		Energy spread	4.034e-4
	a har har a har	Tune Shift ξ_y	0.06 (estimated)
Luminosity/ $\times 10^{35}$ cm- 2 s-10.95 (estimated)		Hour-glass Factor	0.8 (estimated)
		Luminosity/×10 ³⁵ cm ⁻² s ⁻¹	0.95 (estimated)

Parameters

STCF Detector

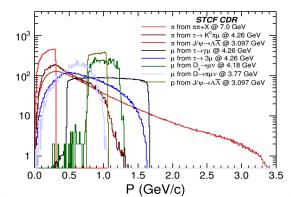
Inner Tracker

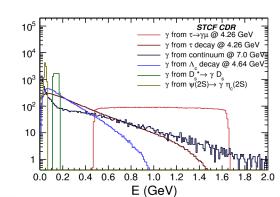
- ➤ ~0.15% X0 / layer
- σxy ~ 50 um

Out Tracker

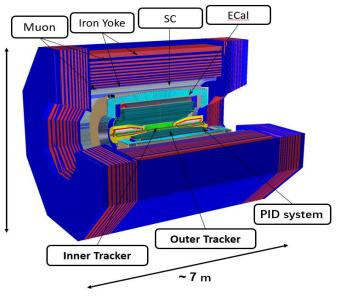
- > $\sigma xy \sim 130$ um, $\sigma p/p \sim 0.5\% @ 1 GeV/c$
- ➢ dE/dx ~ 6%

D PID system


> π/K (K/P) 3-4 σ separation up to 2 GeV/c


Belectromagnetic Calorimeter

- \blacktriangleright Range: 0.02 3 GeV
- Resolution (1GeV): 2.5% (barrel) and 4% (endcap)

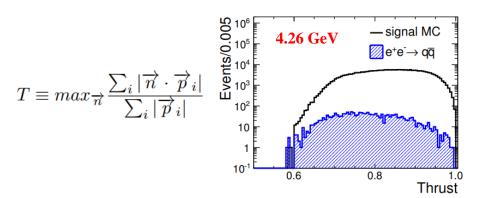

D Muon system

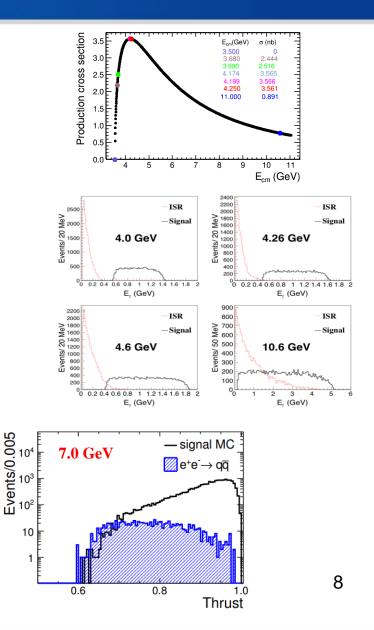
▶ Pion suppression power: >10 and lower to 0.4 GeV/c



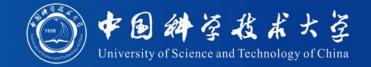
~ 6 m

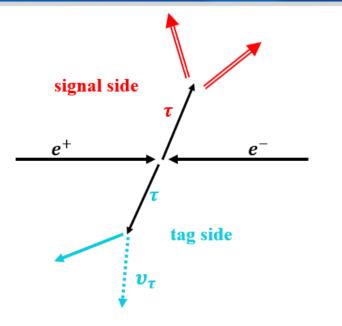
7

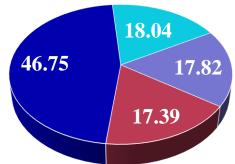

Studies of τ at STCF



- Advantage:
 - Threshold production
 - Peaking cross section in 4-5 GeV
 - At 4.26 GeV, number of tau pairs per year:


 $N_{\tau\tau} \sim 1.0 \text{ ab}^{-1} \times 3.5 \text{ nb} = 3.5 \times 10^9$

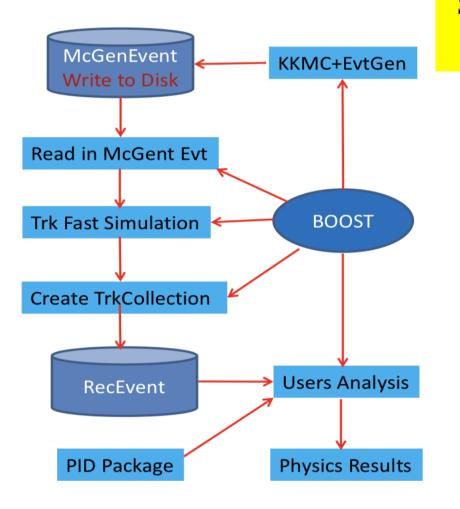

- $e^+e^- \rightarrow \gamma \tau^+ \tau^-$ is not the main background
- Improved π/μ misid rate at STCF
- Disadvantage:
 - Entangled topology of $e^+e^- \rightarrow \tau^+\tau^-$
 - Large $e^+e^- \rightarrow q\bar{q}$ background at low c.m.e


Studies of τ at STCF

- Precisely known kinematics of initial state
 Full reconstruction of signal side
 - Neutrino in tag side is missing

• electronic • muonic • pionic 1-prong • others



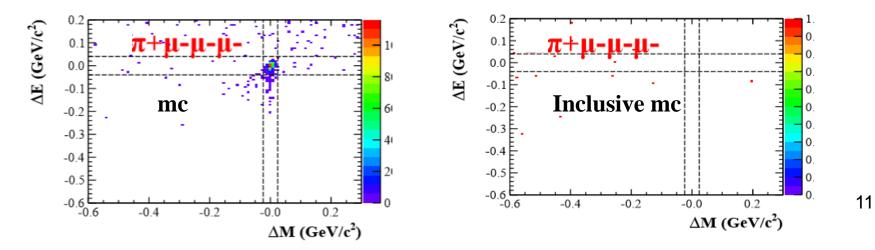

Channel 1:

signal side $\tau \rightarrow \gamma \mu$ tag side $\tau \rightarrow e v \bar{v}$, πv , $\pi v \pi^0$ (total branching fraction $\approx 54\%$)) **Channel 2:**

signal side $\tau \rightarrow lll \ (e^+e^-e^-, \mu^+\mu^-\mu^-, e^+e^-\mu^-, \mu^+\mu^-e^-, \mu^+e^-e^-, e^+\mu^-\mu^-)$ tag side $\tau \rightarrow ev\bar{v}, \ \mu v\bar{v}, \ \pi v + n\pi^0$ (total branching fraction $\approx 82\%$)

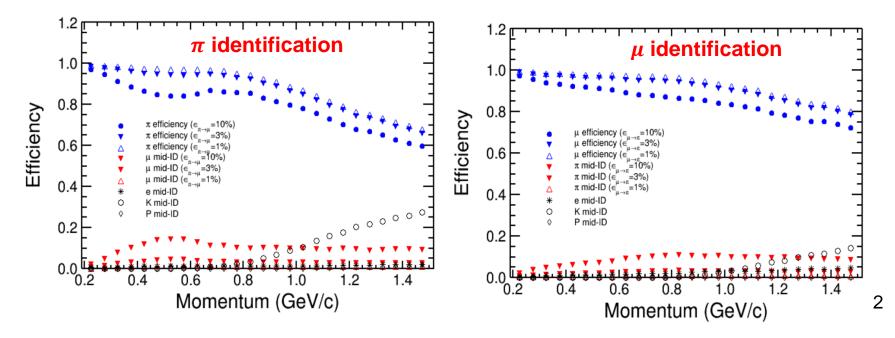
Fast simulation tools

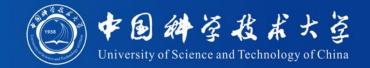


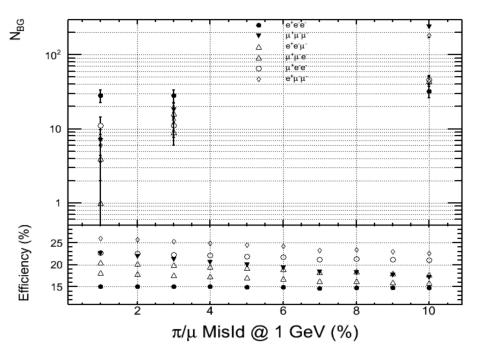

Studying the physics sensitivity, guiding the optimization of Detector design

- Based on BESIII BOOST framework, same analysis process as BESIII jobs
- Implementing all the expected
 performance for the STCF detector.
- The input performances are flexible
 and adjustable for detector
 optimization
 - Acceptable CPU and storage consumption

Searches of $\tau \rightarrow 3l$

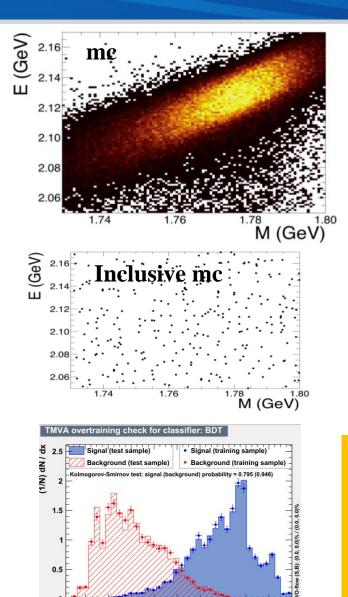

Tag side	Signal side						
1-prong (pi/e/mu+neutrals+neutrinos), 82.62% branching fraction	Category 3-leptons into six types ($e^+e^-e^-$, $\mu^+\mu^-\mu^-$, $e^+e^-\mu^-$, $\mu^+\mu^-e^-$,						
	$\mu^+ e^- e^-, e^+ \mu^- \mu^-)$						
For hadronic tag mode, required missing	Veto gamma conversion, For eter pairs,						
mass $M^2_{\rm miss} < 0.2~GeV^2$	angle _{ee} >5º, M _{ee} >0.05GeV						
For leptonic tag mode, $M^2_{miss} < 2 \; GeV^2$	If more than one combination, select the one						
	with minimum: $(M_{prong3}-M_{\tau})^2/\sigma_{M\tau}+(E_{prong3}-E_{\tau})^2/\sigma_{E\tau}$						
Total Momentum of 1-prong side > 0.4	Using energy and mass constraint to select						
GeV/c	the signals, ΔE , ΔM						
Angle between 1 prong and 3 prong <175°							


Searches of $\tau \rightarrow 3l$


- The PID efficiency in fast simulation is obtained from BESIII, using dE/dx and TOF information.(The mis-ID rate of π/μ can be as large as 30%).
- By scaling the π/μ mis-ID rate to 10%, 3%, 1% at 1GeV, different π/μ PID efficiencies are used.
- Following are the distributions of π/μ PID efficiencies and their mis-ID rates (the mis-ID rates to *e*, *K*, *P* are not changed in this analysis).

Searches of $\tau \rightarrow 3l$

- The number of survived events N_{BG} using 1 ab⁻¹ inclusive data @ 4.26 GeV are obtained for the six decay modes of τ → 3l, with scaling π/μ mis-ID rate to 10%, 3%, 1%.
- The MC selection efficiency are also obtained by varying π/μ mis-ID rate from 10% to 1%.


At STCF, 3.5×10^9 tau pairs @ 4.26 GeV per year. If π/μ mis-ID rate is 1% at 1 GeV, the upper limit is predicted to be:

$$B_{UL}^{90}(\tau \to 3l) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.4 \times 10^{-9}$$

- If taken 10 years data, the best upper limit for $\tau \rightarrow 3l$ will be 1.4×10^{-10}
- Best efficiency $\tau \rightarrow \mu \mu \mu$ increased is 22.5%,

Searches of $\tau \rightarrow \gamma \mu$

-0.6 -0.4 -0.2

-0.8

0 0.2 0.4 0.6 0.8

BDT response

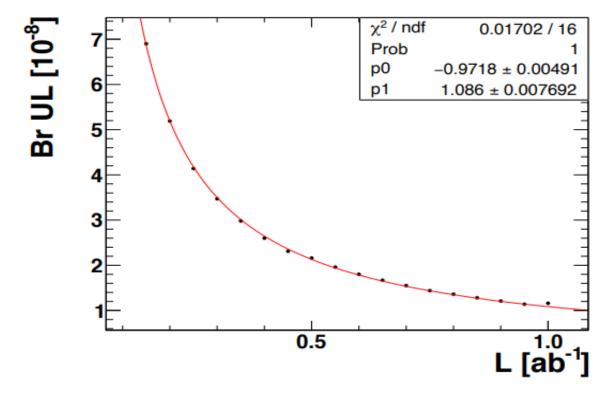
	UL (×10 ⁸)
MUC102, GammaP50%, GammaE80%	1.8
MUC101, GammaP50%, GammaE80%	1.5
MUC100, GammaP50%, GammaE80%	1.2

MUC

GammaP

	UL (×10 ⁸)
MUC102, GammaP50%, GammaE80%	1.8
MUC102, GammaP70%, GammaE80%	2.3
MUC102, GammaP100%, GammaE80%	2.5


GammaE


	UL (×10 ⁸)
MUC102, GammaP50%, GammaE80%	1.8
MUC102, GammaP50%, GammaE90%	3.1
MUC102, GammaP50%, GammaE100%	5.1

• Optimization of STCF detector:

- Photon position resolution better than 4 mm
- Good mu identification power, pi/mu mis-id better than 3%

extrapolate to $10ab^{-1}$: 1.2×10^{-9}

Summary and Prospect



• At STCF, with 1ab⁻¹ luminosity at 4.26 GeV ($3.5 \times 10^9 \tau$ pair), the expected results of cLFV are:

$$\mathcal{B}_{UL}^{90}(\tau \to \mu \mu \mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.4 \times 10^{-9}$$
$$\mathcal{B}_{UL}^{90}(\tau \to \gamma \mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.2 \times 10^{-8}$$

Timeline for STCF

	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030- 2040	2041- 2042
Form Group														
CDR														
TDR														
Construction														
In operation														
Upgrade														

Thanks! 谢谢!