

LVF processes involving t leptons FCC-ee Perspectives

Mogens Dam Niels Böhr Institute Copenhagen

Snowmass21 Meeting RF05: CLFV - Tau Decays and Transitions 23 July 2020

Picture and slide layout, courtesy Jörg Wenninger

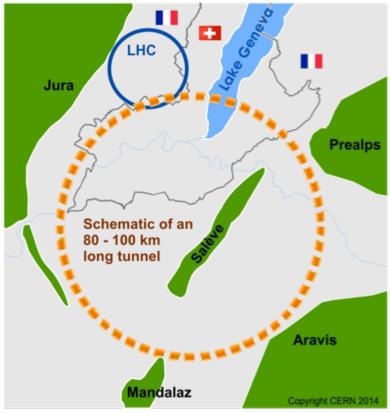
The Future Circular Collider(s)

International collaboration to Study Colliders fitting in a new ~100 km infrastructure, in the Geneva region

◆ Ultimate goal:

≥ 100 TeV pp-collider: FCC-hh

□ Defining infrastructure requirements


◆ Possible first stage:

e⁺e⁻ collider: FCC-ee

□ High Lumi, E_{cm} = 90-400 GeV

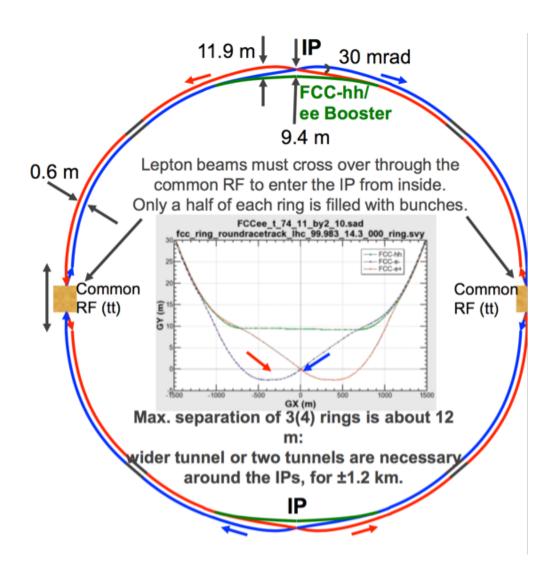
European Strategy:

· Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

Outline

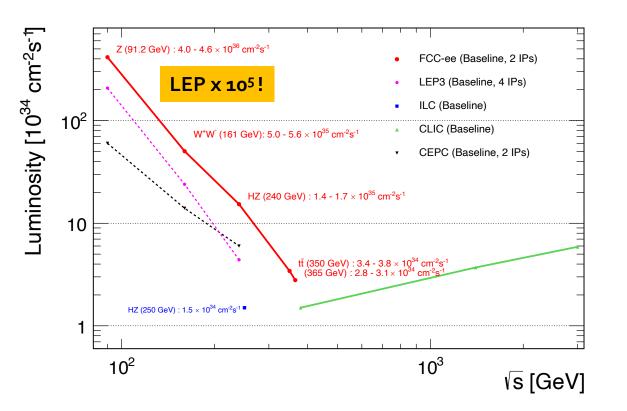
- a. Brief on FCC-ee
- b. Lepton Flavour Violating τ decays
- c. Lepton Flavour Violating Z decays

References:


- FCC CDR Volume 1
- Mogens Dam

Tau-lepton Physics at the FCC-ee circular e⁺e⁻ Collider

SciPost Phys. Proc. 1 (2019) 041,


DOI: 10.21468/SciPostPhysProc.1.041

FCC-ee

Luminosity & Statistics

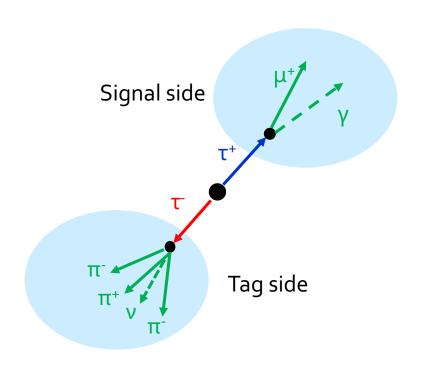
Z peak	E _{CM} : 91 GeV	5 X 10 ¹²	$e^+e^- \rightarrow Z$	4 years
WW threshold	E _{CM} : 161 GeV	10 ⁸	$e^+e^- \rightarrow WW$	1 year
ZH threshold	E _{CM} : 240 GeV	10 ⁶	$e^+e^- \rightarrow ZH$	3 years
tt threshold	E _{CM} : 350 GeV	10 ⁶	$e^+e^- \rightarrow tt^-$	5 years

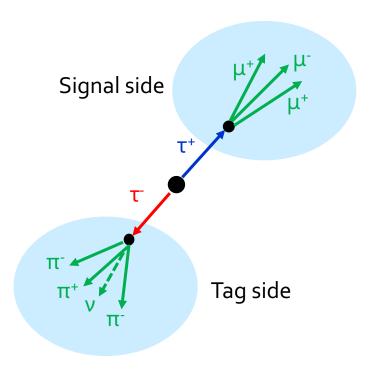
Enormous statistics. Also for τ -leptons

Z decays	5 X 10 ¹²
$Z \rightarrow \tau^+\tau^-$	1.7 X 10 ¹¹
1 vs. 3 prongs	4.2 X 10 ¹⁰
3 vs. 3 prong	3.6 x 10 ⁹
1 vs. 5 prong	2.8 x 10 ⁸
1 vs. 7 prong	< 87,000
1 vs 9 prong	?

A wealth of EW and Higgs Precision Measurements

Observable	Measurement	Current precision	FCC-ee stat.	FCC-ee syst.	Challenge
m _z (keV)	Z lineshape	91186700 ± 2200	5	100	E _{Beam} calib
Γ _z (keV)	Z lineshape	2495200 ± 2300	8	100	E _{Beam} calib
R _i (×10³)	Ratio had to lept	20767 ± 25	0.01	0.2-1	Lepton accept
αα _s (m _Z) (×10 ⁴)	From R_ℓ	1196 ± 30	0.1	0.4-1.6	ditto
R _b (×10 ⁶)	Ratio bb to hadrons	216290 ± 660	0.3	< 60	$g \rightarrow bb$
N _ν (×10³)	Peak cross section	2991 ± 7	0.005	<1	Lumi meast
sin²θ _W eff (×10 ⁶)	From A _{FB} ^{µµ} at Z peak	231480 ± 160	3	2-5	E _{Beam} calib
1/α _{QED} (m _Z) (×10 ³)	From A _{FB} ^{µµ} off-peak	128952 ± 14	4	small	QED corr.
A _{FB} ^{pol,τ} (10 ⁴)	au pol charge assym	1498 ± 49	0.15	< 2	
m _w (MeV)	WW threshold scan	80385000 ± 15000	600	300	E _{Beam} calib
N_{v}	$e^+e^- \rightarrow \gamma Z, Z \rightarrow \nu \nu, \ell \ell$	2.92 ± 0.05	0.001	< 0.001	?
α _s (m _W) (×10 ⁴)	From R_ℓ^W	1170 ± 420	3	small	Lepton accept
m _{top} (MeV)	tt threshold scan	172740 ± 500	20	small	QCD corr
Γ_{top} (MeV)	tt threshold scan	1410± 190	40	small	QCD corr
λ_{top} / λ_{top} sm	tt threshold scan	1.2 ± 0.3	0.08	small	QCD corr


Higgs


Coupling	HL-LHC	FCC-ee	
g _{нww}	1.4%	0.43%	
g _{HZZ}	1.3%	0.17%	
д ньь	2.9%	0.61%	
g _{Hcc}	SM	1.21%	
g_{Htt}	1.7%	0.74%	
днμμ	4.4%	9.0%	
g _{Ηγγ}	1.6%	3.9%	
g _{Hgg}	1.8%	1.0%	
BR _{EXOT}	SM	< 1.0%	
Γ_{H}	SM	1.3%	
g _{Htt}	2.5%	-	
9 ннн	50%	34%	

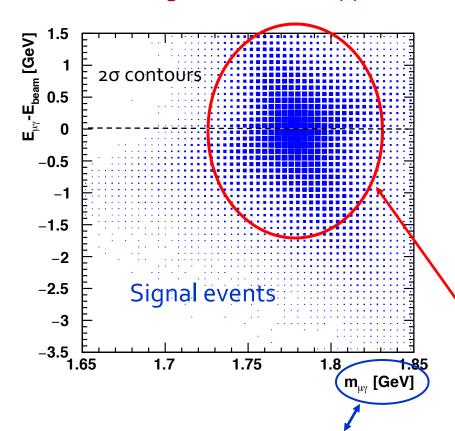
 \dots and, on top of that, we can do quite a bit of heavy flavour physics including τ \dots

LFV τ decays

Two benchmark modes:

$\tau^- \rightarrow e^- \gamma$, $\tau^- \rightarrow \mu^- \gamma$

Current limits:


- □ $Br(\tau^- \to e^- \gamma) < 3.3 \times 10^{-8}$ BaBar, 10.6 GeV; 4.8 × 10⁸ $e^+ e^- \to \tau^+ \tau^-$: 1.6 expected bckg □ $Br(\tau^- \to \mu^- \gamma) < 4.4 \times 10^{-8}$ 3.6 expected bckg
- ♦ Main background: Radiative events (IRS+FSR), $e^+e^- \rightarrow \tau^+\tau^-\gamma$ □ $\tau \rightarrow \mu\gamma$ decay faked by combination of γ from ISR/FSR and μ from $\tau \rightarrow \mu\nu\nu$
- At FCC-ee, with 1.7 x 10¹¹ $\tau^+\tau^-$ events, what can be expected?
 - □ Boost 8-9 times higher than at B-factories
 - Detector resolutions rather different, especially ECAL
 - □ Parametrised study of signal and the main background, $e^+e^- \rightarrow \tau^+\tau^-\gamma$, performed * See following 2 pages
 - □ From this study (assuming a 25% signal and background efficiency), projected BR sensitivity:

2 X 10⁻⁹

$\tau \rightarrow \mu \gamma$ Study – The signal

• Generate **signal events** with pythia8: $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma)$, with $\tau^- \rightarrow \mu^-\gamma$

In order to de-correlate the E and m variables, this mass, $m_{\gamma\mu}$, is in fact the measured mass scaled by measured energy over beam energy:

$$m_{\gamma\mu} = m_{raw} x (E_{\gamma\mu}/E_{beam})$$

Smear with assumed FCC-ee detector resolutions (ILC-like detector):

Muon momentum [GeV]

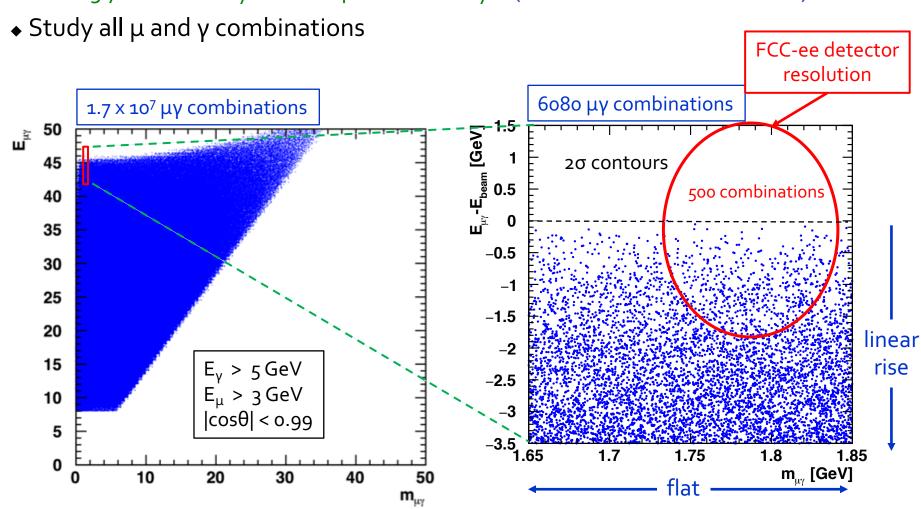
$$\sigma(p_T)/p_T = 2x10^{-5} x p_T \oplus 1x10^{-3}$$

Photon ECAL energy [GeV]

$$\sigma(E)/E = 0.165/\sqrt{E} \oplus 0.010/E \oplus 0.011$$

Photon ECAL spatial [mm]

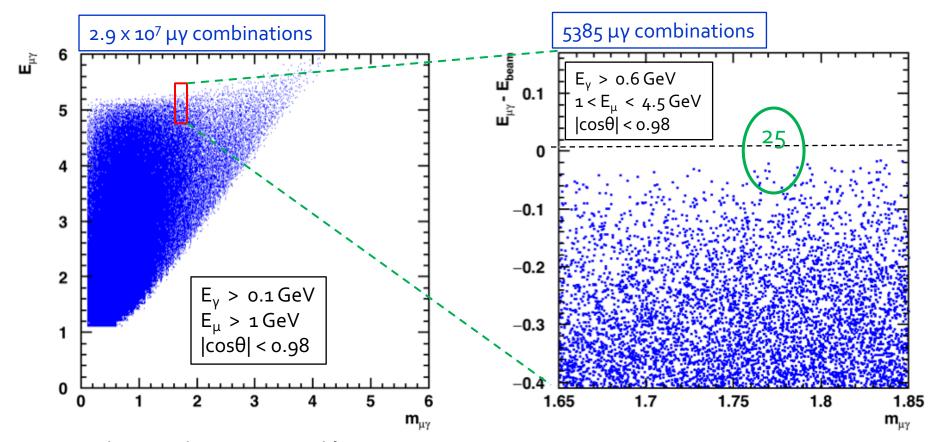
$$\sigma(x) = \sigma(y) = (6/E \oplus 2) \text{ mm}$$


From this, determine **FCC-ee** effective detector resolution for $\tau \rightarrow \mu \gamma$

$$\sigma(m_{\nu\mu}) = 26 \text{ MeV}; \quad \sigma(E_{\nu\mu}) = 850 \text{ MeV}$$

$\tau \rightarrow \mu \gamma$ Study – The background

- ◆ Background: Generate 5 x 10⁸ events e⁺e⁻ → Z → τ⁺τ⁻(γ) → (μ⁺νν)(μ⁻νν)(γ)
 □ 1 x 10⁹ τ → μνν decays corresponding to
 - 5.7 x 10⁹ τ decays from 8.4 x 10¹⁰ Z decays (1.6% of full FCC-ee statistics)

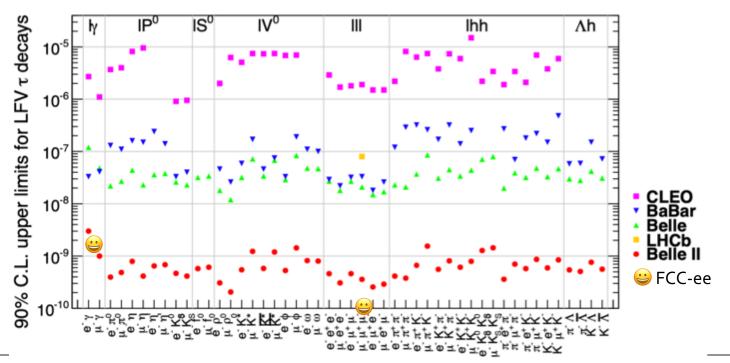


10

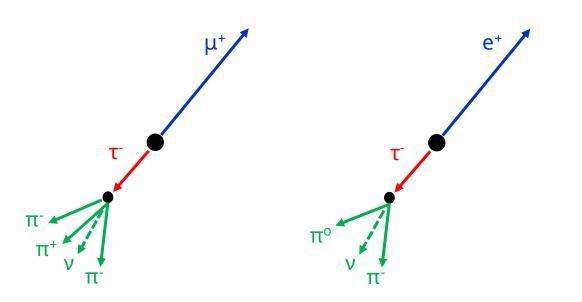
$\tau \rightarrow \mu \gamma$ Study – Check of method

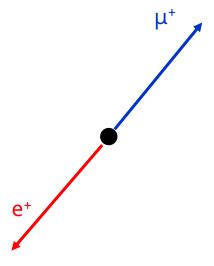
Cross check: Perform similar study at B-factory, $\sqrt{s} = 10.6$ GeV

□ Again 5 x 10⁸ events $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-(\gamma) \rightarrow (\mu^+\nu\nu)(\mu^-\nu\nu)(\gamma)$


From this study, estimated limit: 1.9 x 10⁻⁹

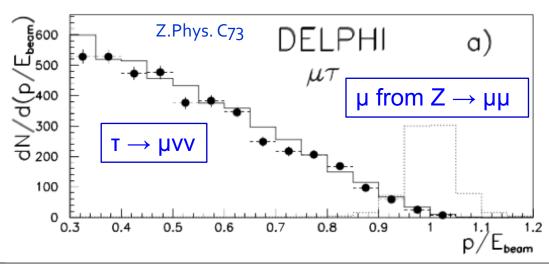
Compare to my extrapolation of current BaBar limit to Belle2 statistics: ~3-4 x 10⁻⁹


11


$\tau^- \rightarrow \ell^- \ell^+ \ell^-$

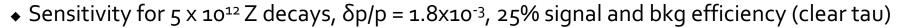
- ◆ Current limits:
 - □ All 6 combs. of e^{\pm} , μ^{\pm} : Br \lesssim 2 x 10⁻⁸ Belle@10.6 GeV; 7.2 x 10⁸ $e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}$: no cand.
 - □ μ⁻μ⁺μ⁻: Br < 4.6 x 10⁻⁸ LHCb 2.0 fb⁻¹: background candidates
- ◆ FCC-ee prospects
 - □ Expect this search to have very low background, even with FCC-ee like statistics
 - □ Should be able to have sensitivity down to BRs of \leq 10⁻¹⁰
- ◆ Many more decay modes to search for when time comes...

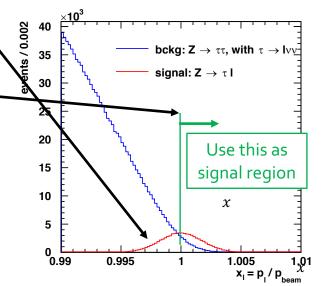
LFV Z decays



$Z \rightarrow e\tau$ and $Z \rightarrow \mu\tau$

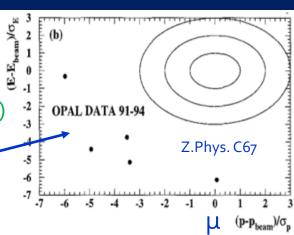
◆ Current limits:


- \Box Br(Z \rightarrow et) < 9.8 × 10⁻⁶ LEP/OPAL (4 × 10⁶ Z decays)
- \Box Br(Z \rightarrow $\mu\tau$) < 12. \times 10⁻⁶ LEP/DELPHI (4 \times 10⁶ Z decays)
- Method:
 - □ Identify *clear tau decay* in one hemisphere
 - □ Look for "beam-energy" lepton (electron or muon) in other hemisphere
- ◆ Limitation: How to define "beam-energy" lepton
 - \Box Unavoidable background from $\tau \to \text{evv} / \tau \to \mu \nu \nu$ with two (very) soft neutrinos
 - □ How much background depends on energy/momentum resolution
 - □ Example DELPHI



$Z \rightarrow \ell \tau$ - Study of Sensitivity

- Generate very upper part of μ momentum spectrum from $\tau \to \mu \nu \nu$ decays
 - □ Luminosity equivalent to 5 x 10¹² Z decays
- ◆ Inject LFV signal of adjustable strength
 - □ Here for illustration, $Br(Z \rightarrow \tau \mu) = 10^{-7}$, i.e. 500,000 e/ μ
- ◆ Smear momentum by variable amounts, here 1.8 x 10⁻³
- Define x > 1 as signal region —
- ◆ Derive 95% confidence limit on excess in signal region
- Findings:
 - Sensitivity scales linear with momentum resolution
 - □ FCC-ee detectors have a momentum resolution at p=45.6 GeV of about **1.5** x **10**⁻³
 - Ten times better than for LEP detectors
 - □ Add contribution from FCC-ee beam-energy spread (0.9 x 10⁻³). Total: 1.8 x 10⁻³


- □ For $Z \rightarrow \tau \mu$, sensitivity down to BRs of **10**⁻⁹
- □ For $Z \rightarrow \tau e$, similar sensitivity **10**⁻⁹
 - Momentum resolution of electrons tend to be slightly worse than muons due to bremsstrahlung.
 However, downwards smearing is not a major concern.

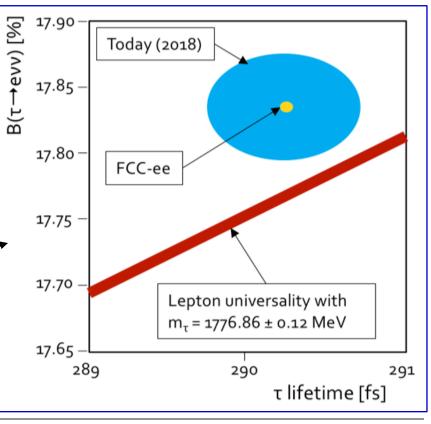
$Z \rightarrow e\mu$

- ◆ Current limit:
 - \square **7.5** \times **10**⁻⁷ **LHC/ATLAS** (20 fb⁻¹; no candidates)
 - \square **1.7** \times **10**⁻⁶ **LEP/OPAL** (4.0 \times 10⁶ Z decays: no candidates)
- ◆ Clean experimental signature:
 - □ Beam energy electron vs. beam energy muon
- Main experimental challenge:
 - □ Catastrophic bremsstrahlung energy loss of muon in electromagnetic calorimeter
 - * Muon would deposit (nearly) full energy in ECAL: Misidentification $\mu \rightarrow e$
 - ❖ NA62: Probability of muon to deposit more than 95% of energy in ECAL: 4 x 10⁻⁶
 - Possible to reduce by
 - ECAL longitudinal segmentation: Require energy > mip in first few radiation lengths
 - Aggressive veto on HCAL energy deposit and muon chamber hits
 - ❖ If dE/dx mesaurement available, (some) independent e/µ separation at 45.6 GeV
 - Could give handle to determine misidentification probability $P(\mu \rightarrow e)$
 - Notice: ATLAS uses transition radiation signal as part of their electron ID.
- ◆ FCC-ee:
 - □ Misidentification from catastrophic energy loss corresponds to limit of about Br(Z \rightarrow e μ) \simeq 10⁻⁸
 - □ Possibly do $\mathcal{O}(10)$ better than that $Br(Z \rightarrow e\mu) \sim 10^{-9}$ (probably even 10^{-10} with IDEA dE/dx)

Summary

- From 5 x 10¹² Z decays, FCC-ee will produce 1.7 x 10¹¹ τ⁺τ⁻ pairs
- Statistics comparable to (factor ~3 higher) Belle2 projection; higher boost (γ=25)
 - Boost is advantageous for many studies
- Searches for **lepton flavour violating τ decays**; sensitivites comparable to Belle2
 - □ For two benchmark studies, range from $\leq 10^{-10}$ to few x 10^{-9}
 - Many more studied to be pursued
- ◆ Improved sensitivity to lepton flavour violating Z decays by factors up to O(104)
 - \Box Sensitivities down to **10**⁻⁹ in all modes including τ modes

Plus (not covered in this talk):


- Potential for very precise $\sin^2\theta_W$ determination via τ polarisation measurement
- Hadronic branching ratios and spectral functions, α_s , ν_{τ} mass, ...
- Improve Lepton universality test by 1 2 orders of magnitude down to $\mathcal{O}(10^{-5} 10^{-4})$ level
 - fine Substantial improvement in f au lifetime
 - \Box Substantial improvement in τ (leptonic) branching fractions (virtually no progress since LEP)
 - \Box Competitive measurement (possibly substantial improvement) of τ mass

Summary

- From 5 x 10¹² Z decays, FCC-ee will produce **1.7 x 10¹¹ τ**⁺**τ**⁻ **pairs**
- Statistics comparable to (factor ~3 higher) Belle2 projection; higher boost (γ=25)
 - Boost is advantageous for many studies
- Searches for **lepton flavour violating τ decays**; sensitivites comparable to Belle2
 - □ For two benchmark studies, range from \$ 10⁻¹⁰ to \$
 - Many more studied to be pursued
- Improved sensitivity to lepton flavour violatin
 - □ Sensitivities down to $\mathbf{10^{-9}}$ in all modes including τ

Plus (not covered in this talk):

- Potential for very precise $\sin^2\theta_W$ determination
- Hadronic branching ratios and spectral function
- ◆ Improve Lepton universality test by 1 2 orde
 - \Box Substantial improvement in τ lifetime
 - Substantial improvement in τ (leptonic) branchir
 - □ Competitive measurement (possibly substantial i

Detector requirements

Precision τ physics sets very strong detector requirements; constitutes a good benchmark

Vertexing

□ Lifetime measurement to 10⁻⁴ corresponds to 0.22 μm flight distance

Tracking

- □ Two (or rather multi) track separation: measure 3-, 5-, 7-, and perhaps even 9-prong decays
- Extremely good control of momentum and mass scale
 - * τ mass measurement (scale from ~10⁹ J/psi from Z decays? δ m/m \simeq 2 ppm)
 - * Sensitivity of search for flavour violating Z decays, e.g. Z $\rightarrow \mu \tau$, scales linearly in momentum resolution at 45.6 GeV
- □ Low material budget: Minimize confusion from hadronic interaction in material

Calorimetry

- \Box Clean γ and π° reconstruction from 0.2 to 45 GeV is key to precison τ physics from Z decays
- **□** Collimated topologies: Important to be able to separate γs from closelying hadronic showers
 - Aleph @LEP did pretty well with 3x3 cm ECAL cells divided into three longitudinal samplings.
 Need study of "modern" calorimeter concepts

PID

- \square Necessary if one desires to separate π/K modes (0 45 GeV momentum range)
- □ **Redundancy**: Provides valuable handle to create test samples for study of calorimetry
 - * For drift chamber of IDEA detector concept, even for e/μ separation for all momenta

Detector requirements

Precision τ physics sets very strong detector requirements; constitutes a good benchmark

Vertexing

□ Lifetime measurement to 10⁻⁴ corresponds to 0.22 μm flight distance

Tracking

- Two (or rather multi) track congration, measure a F 7 and perhans even a proper decays
- With its TeraZ programme, FCC-ee will be a phenomenal factory for the production of heavy flavour including τ-leptons
 - Possibility of unprecedented precision on τ properties and rare decays
 - Not obvious that an "off-the-shelf" e+e- Higgs-factory detector design would suffice to beat down the systematics
 - Now, is the time to develop the precise detector requirements and to work on the optimisation of the detector design
 - International participation very welcome
- \square Necessary if one desires to separate π/K modes (o 45 GeV momentum range)
- □ **Redundancy**: Provides valuable handle to create test samples for study of calorimetry
 - * For drift chamber of IDEA detector concept, even for e/μ separation for all momenta

Mogens Dam / NBI Copenhagen

PID

um

ngs.

Extra Slides

