

1

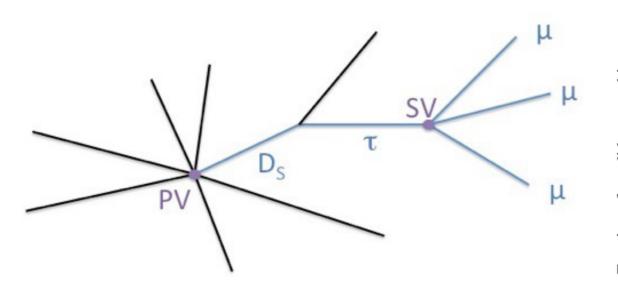
CLFV $\tau \rightarrow 3\mu$ decays: LHC experiments

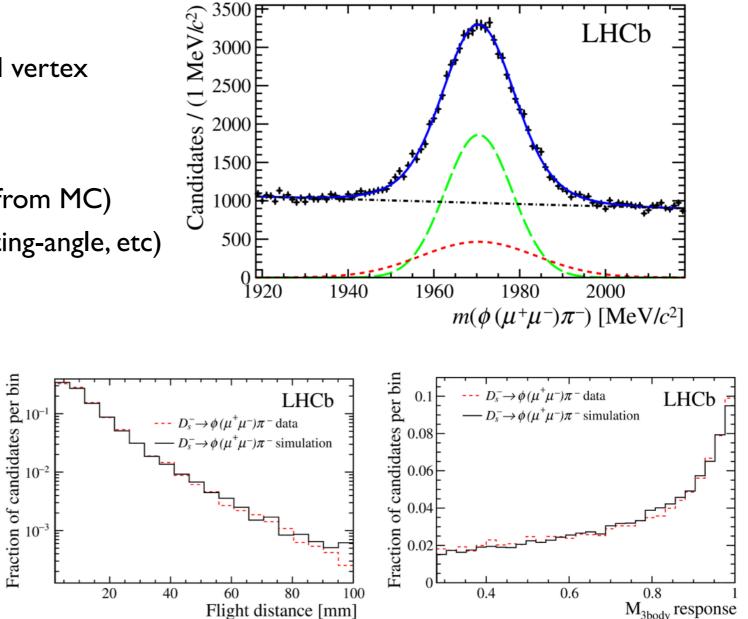
Jian Wang (Univ. of Florida)

CLFV tau workshop 23 July 2020

Introduction

- Searching for CLFV $\tau \rightarrow 3\mu$ decays is feasible at hadron colliders
 - Huge number of τ produced at the LHC
 - $\tau \rightarrow 3\mu$ has a clean signature (as opposed to 3e, $\mu\mu e$, $\mu\gamma$)
 - LHC experiments have good capability of muon detection and vertex reconstruction
- World best limit: Belle ~ 2.1×10⁻⁸ @ 90% CL [*] Phys.Lett.B 687 (2010) 139

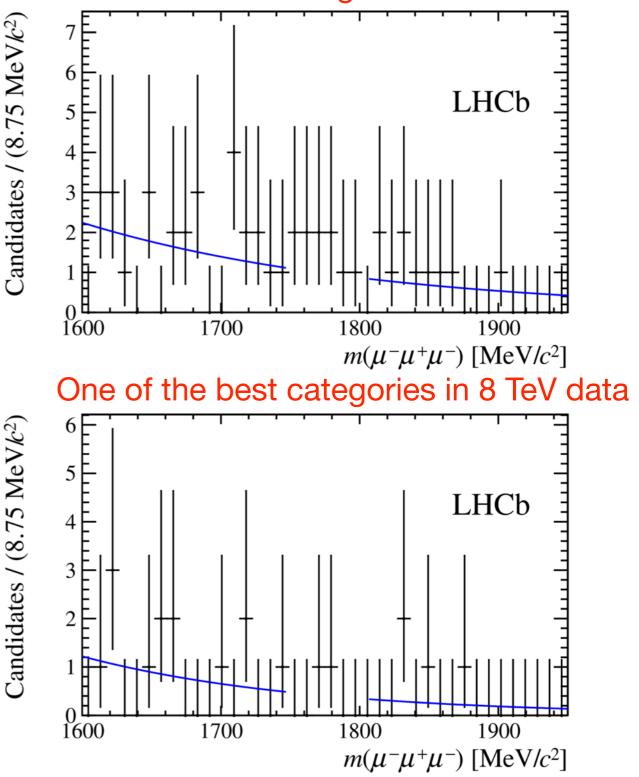

Process	number of τ leptons (L=100 fb ⁻¹)	Sources of T
$pp \rightarrow c \ \bar{c} + \dots$ $D \rightarrow \tau \nu$ $pp \rightarrow b \ \bar{b} + \dots$	$1.2 \times 10^{13} (95\% D_s, 5\% D^{\pm})$	 Heavy Flavor (HF) semi-leptonic decay: large cross section; low p_T, high
$B \rightarrow \tau \nu +$ $B \rightarrow D(\tau \nu) +$	$4.5 \times 10^{12} (44\% B^{\pm}, 45\% B^{0}, 11\% B_{s}^{0}, 0\% B_{c}^{\pm})$ $1.9 \times 10^{12} (98\% D_{s}, 2\% D^{\pm})$	pseudorapidity (η); high background
$pp \to W + \dots \to \tau \nu + \dots$ $pp \to Z + \dots \to \tau \tau + \dots$		 W decay: relatively small cross section; high p_T; low background


[*] 90% CL limits are quoted throughout this talk

1409.8548 JHEP 02 (2015) 121

HF channel - LHCb

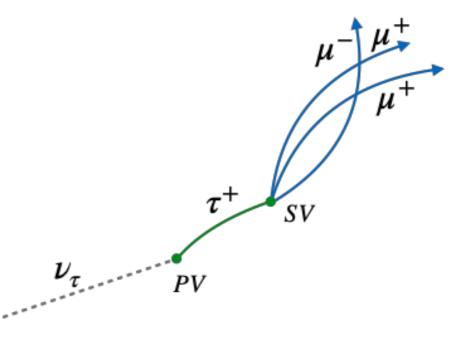
- Run I: I fb⁻¹ @ 7 TeV + 2 fb⁻¹ @ 8 TeV
- Select 3 muons sharing a common displaced vertex
- Normalisation channel: $D_s \rightarrow \phi \pi \rightarrow (2\mu)\pi$
- Mass resolution ~ 10 MeV
- Train 2 multivariate classifiers (background from MC)
 - M(3body): event topology (vertex, pointing-angle, etc)
 - M(PID): muon identification

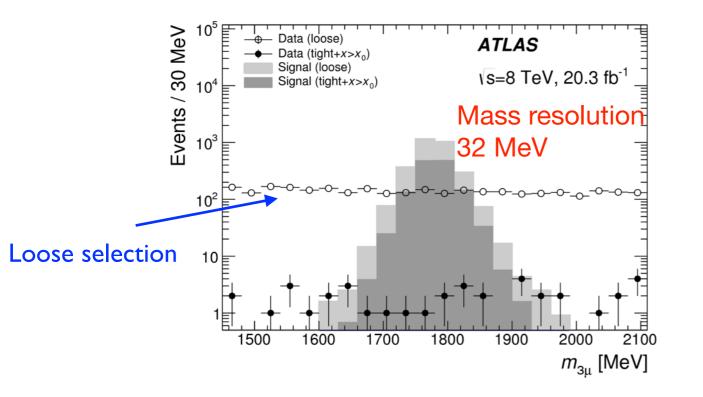


HF channel - LHCb

- 65 event categories (30 @ 7TeV + 35 @ 8TeV) based on M(3body) and M(PID) outputs
 - Events with very low M(3body) or M(PID) outputs already excluded
- Fit m(3µ) spectra, excluding signal region, to estimate background
- Total event yields (in ±2 times mass resolution window) in 35 categories of 8 TeV
 - ~30 signal (assuming $B(\tau \rightarrow 3\mu) = 10^{-7}$)
 - ~300 data events
- Upper limit on $B(\tau \rightarrow 3\mu)$: 4.6 x 10^{-8} (expected: 5.0 x 10^{-8})

1409.8548 JHEP 02 (2015) 121

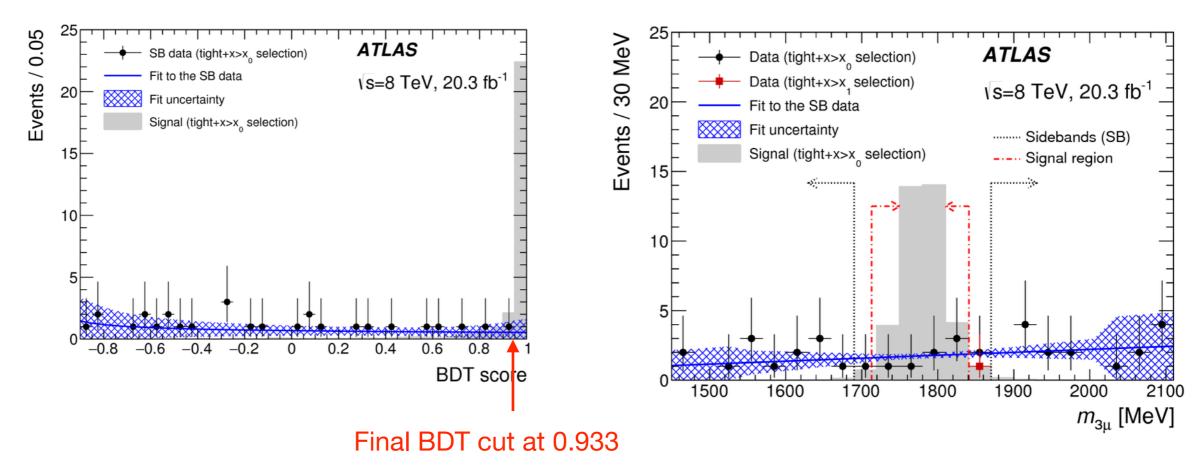

One of the best categories in 7 TeV data



1601.03567 Eur. Phys. J. C (2016) 76:232

W channel - ATLAS

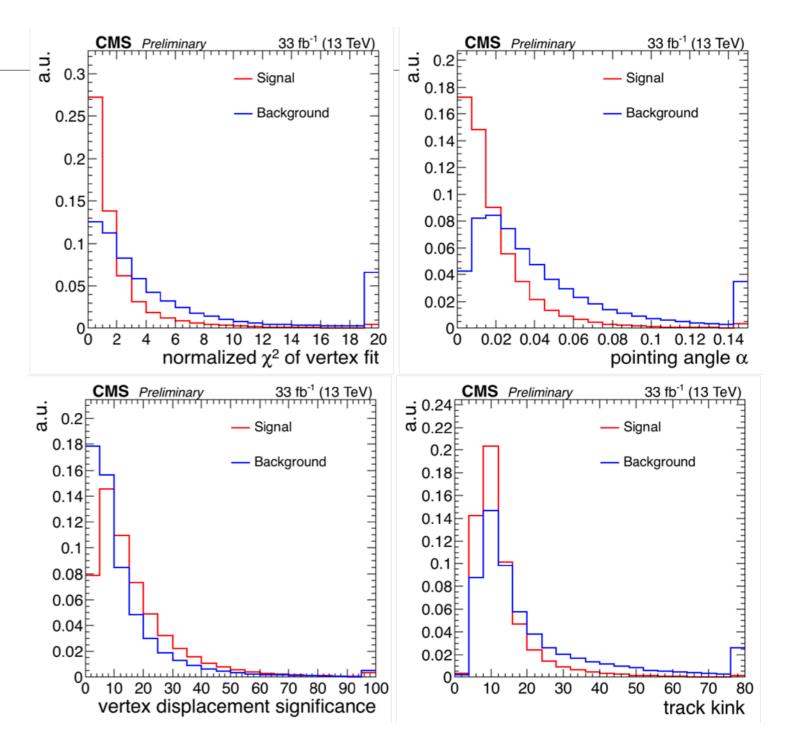
- Run I data: 8 TeV; $L = 20 \text{ fb}^{-1}$
 - Number of $W \rightarrow \tau$ produced is 2.4 x 10⁸
- Six different multi-muon triggers, and one dimuon + MET trigger
- Event selection:
 - Three "high-quality" muons
 - Loose selection (vertex and kinematics) to obtain a data sideband sample to train BDT (about 4000 events)


Signal characteristics:

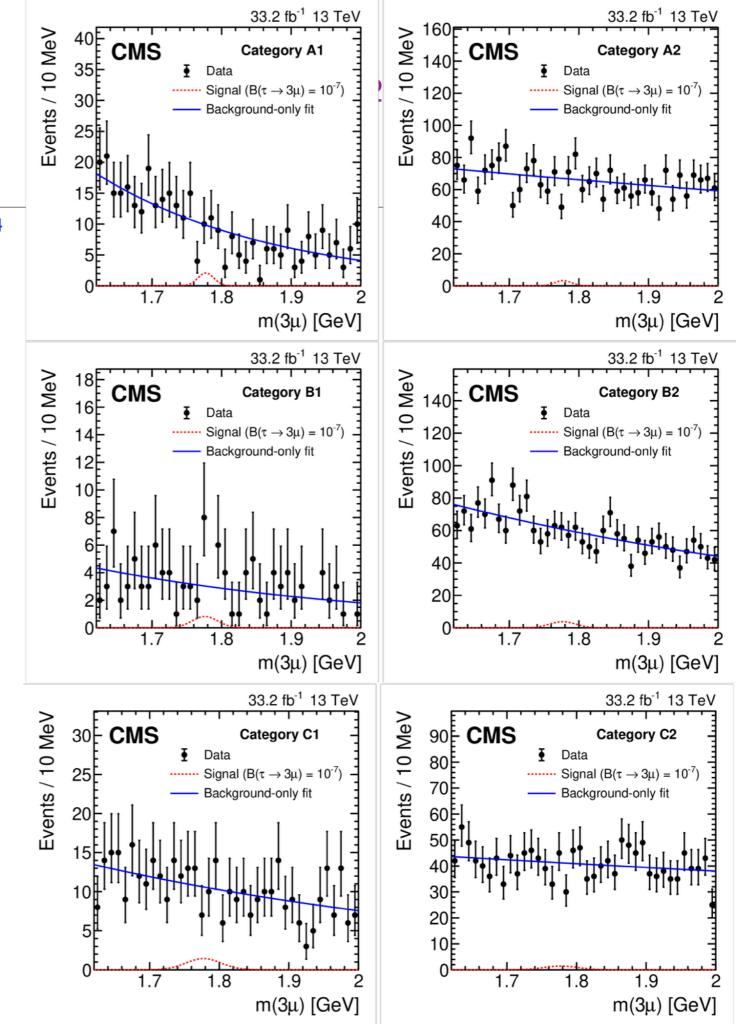
- p_T(3µ) ~ 20-50 GeV
- Common vertex, displaced wrt the primary vertex
- Boosted topology (muon dR ~ 0.07)
- Missing transverse momentum opposite to 3µ
- Transverse mass of the system consistent with m(W)
- Little hadronic activity

1601.03567 Eur. Phys. J. C (2016) 76:232

W channel - ATLAS

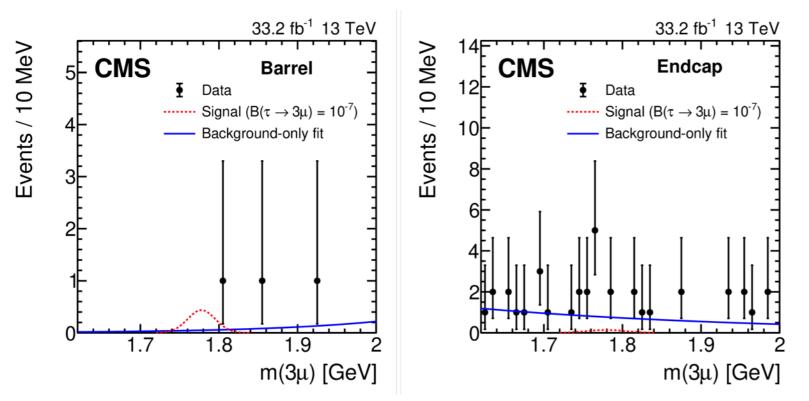

- Signal region after final selections (including BDT cut)
 - Total signal acceptance x efficiency = 2.3%
 - Background estimation: 0.19
 - Observed: 0
- Upper limit on $B(\tau \rightarrow 3\mu)$: 3.8 x 10^{-7} (expected: 3.9 x 10^{-7})

2007.05658


HF channel - CMS

- 2016 data: 13 TeV; L = 33 fb⁻¹
- Trigger: 2 muons of p_T > 3 GeV, plus another track, sharing a displaced vertex
 - So it collects τ→3µ signal and at the same time Ds→φπ→(2µ)π events, which are used to validate and correct signal MC
- Select 3µ candidates
- Train BDT to separate signal (MC) from background (data sidebands)
 - The most discriminating ones being vertex chi2, pointing-angle, vertex displacement, etc

HF channel - CMS


- Overall signal acceptance x efficiency ~ 10^{-4}
- Six event categories in total
 - 3 categories based on mass resolution (12 MeV, 19 MeV and 25 MeV respectively, dictated by inner tracker detector)
 - 2 sub-category based on BDT scores
- Simultaneous fit of $m(3\mu)$ of 6 categories
- Events yields in the 3 higher BDT score categories
 - 20 signal (assuming $B(\tau \rightarrow 3\mu) = 10^{-7}$)
 - ~200 data events
- The observed (expected) upper limit on $Br(\tau \rightarrow 3\mu)$ is 9.2 x 10⁻⁸ (10.0 x 10⁻⁸)

W channel and combination - CMS

2016 data: 13 TeV; L = 33 fb-1

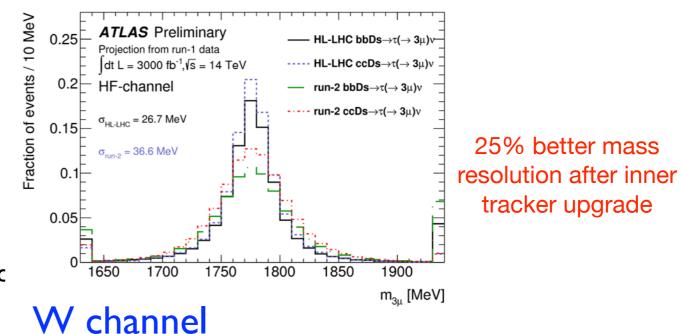
- Use the same trigger as the HF channel (2 muons of $p_T > 3$ GeV, plus another track, sharing a displaced vertex)
- The most powerful variables to reject background are the typical
 W→I+nu observables p_T, transverse mass, isolation
 - The same is true in the ATLAS analysis

W channel

Observed (expected) upper limit on $Br(\tau \rightarrow 3\mu)$ is $20 \times 10^{-8} (13 \times 10^{-8})$

CMS HF and W channel combination:

• Observed (expected) upper limit on Br($\tau \rightarrow 3\mu$) is 8.0 x 10⁻⁸ (6.9 x 10⁻⁸)


Sidenotes

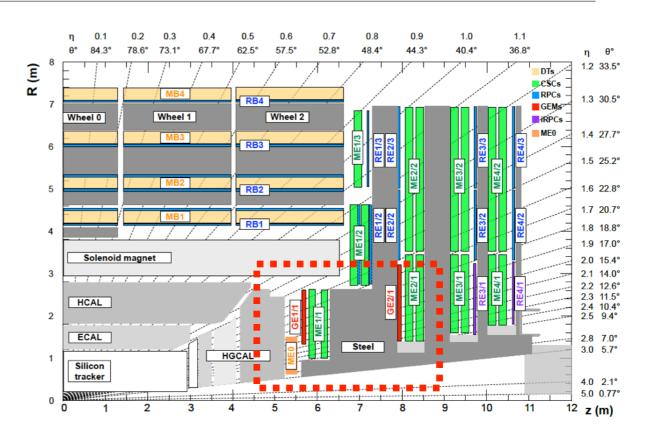
- HF channel
 - LHCb has much larger acceptance, compared to CMS, as D and B mesons are boosted; also better mass resolution
 - S/B ~ 0.05-0.15 (assuming B($\tau \rightarrow 3\mu$)= 10⁻⁷), with LHCb slightly better
 - LHCb paper mentions "3 real muon" irreducible background, Ds→η(μμγ)μν, being important
- W channel
 - The CMS analysis uses a dedicated low threshold trigger (which is believed to be the plan for ATLAS future analysis on this channel), but the gain by doing so is not big
 - S/B ~ 3 for both CMS and ATLAS analyses (assuming B($\tau \rightarrow 3\mu$)= 10⁻⁷)
 - Almost zero background the search sensitivity grows faster than sqrt(N)
- S/B ratio is more than a factor 20 worse in HF channel than in W channel

ATL-PHYS-PUB-2018-032

HL-LHC projection - ATLAS

- 3000 fb⁻¹ at 14TeV
- Both W channel and HF channel projections are based on W channel published result ("datacard" level projection)
- Assuming no deterioration due to high pile-up
- W channel:
 - Intermediate scenario: lower trigger thresholc
 - Improved scenario: upgraded inner tracker detector
- HF channel
 - Acceptance and efficiency based on MC
 - Background estimation: High/Medium/Low background levels are taken as a factor of 10/3/1 as that in W channel analysis

Scenario	$\mathcal{A} \times \epsilon [\%]$	$N_{ m bkg}^{ m exp}$	90% CL UL on BR($\tau \to 3\mu$) [10 ⁻⁹]
Run 1 result	2.31	0.19	276
Non-improved	2.31	50.71	13.52
Intermediate	5.01	50.71	6.23
Improved	5.01	40.06	5.36

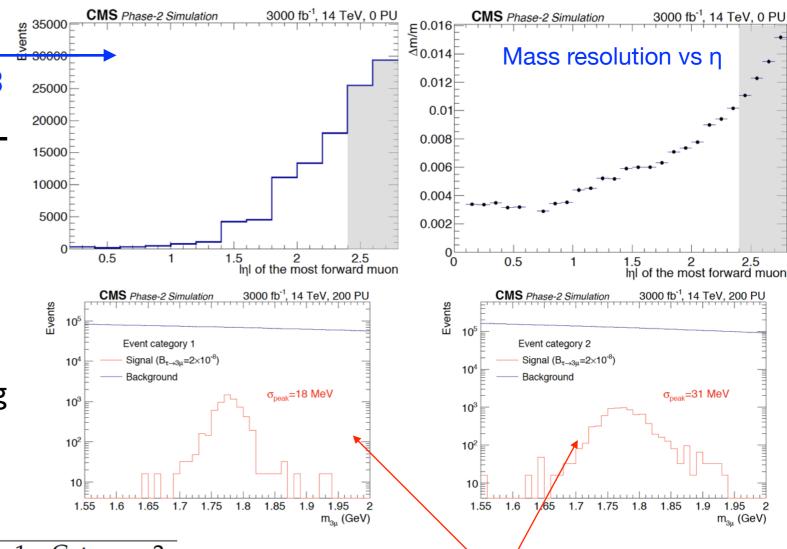

HF channel

Scenario	$\mathcal{A} \times \epsilon [\%]$	$N_{\rm bkg}^{\rm exp}$	90% CL UL on BR($\tau \to 3\mu$) [10 ⁻⁹]
High background	0.88	507.05	6.40
Medium background	0.88	152.12	2.31
Low background	0.88	50.71	1.03

CMS Muon Phase-2 Upgrade TDR CERN-LHCC-2017-012

HL-LHC projection - CMS

- 3000 fb⁻¹ at 14TeV
- HF channel only (6 x 10^{14} tau)
- Based on full simulation of signal and QCD background
 - 200 pile-up, upgraded detector
- CMS detector upgrade most relevant for $\tau \rightarrow 3\mu$ search
 - Enhanced forward muon system
 - Track-trigger capability for tracks with $p_T > 2 \text{ GeV}$
 - Higher trigger bandwidth (100 kHz → 750 kHz)


Adding new GEM detectors

- more layers
- extended pseudorapidity (n) coverage

CMS Muon Phase-2 Upgrade TDR CERN-LHCC-2017-012

HL-LHC projection - CMS

- A factor of 2 gain due to η coverage extension from 2.4 to 2.8
- The gained events have a worse trimuon mass resolution (dictated by inner tracker)
- High pile-up has a visible effect on signal selection efficiency, but not dramatic
- Multivariate likelihood is built, using mostly event topology variables

	Category 1	Category 2	
Number of background events	$2.4 imes10^6$	$2.6 imes 10^{6}$	
Number of signal events	4580	3640	
Trimuon mass resolution	18 MeV	31 MeV	
$B(\tau \rightarrow 3\mu)$ limit per event category	$4.3 imes 10^{-9}$	$7.0 imes 10^{-9}$	
$B(\tau \rightarrow 3\mu)$ 90%C.L. limit	$3.7 imes 10^{-9}$		
$B(\tau \rightarrow 3\mu)$ for 3σ -evidence	$6.7 imes 10^{-9}$		
$B(\tau \rightarrow 3\mu)$ for 5 σ -observation	$1.1 imes10^{-8}$		

Two event categories based on whether muons in η [2.4, 2.8] are used

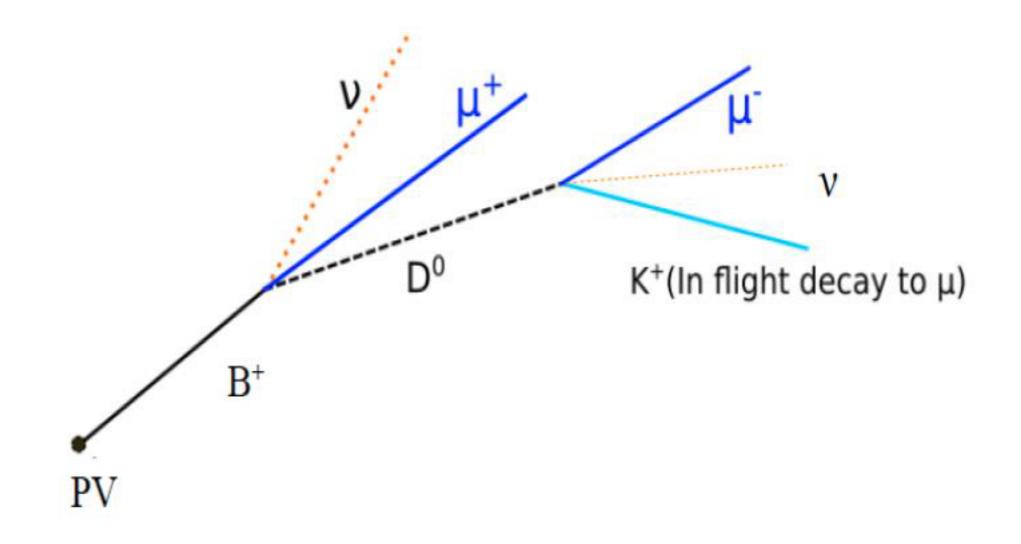
"Category 2" has worse mass resolution, while the S/B ratio is not much worse

Summary

Both D, B meson decays and W decays have been exploited for the $\tau \rightarrow 3\mu$ search, by LHCb, ALTAS and CMS

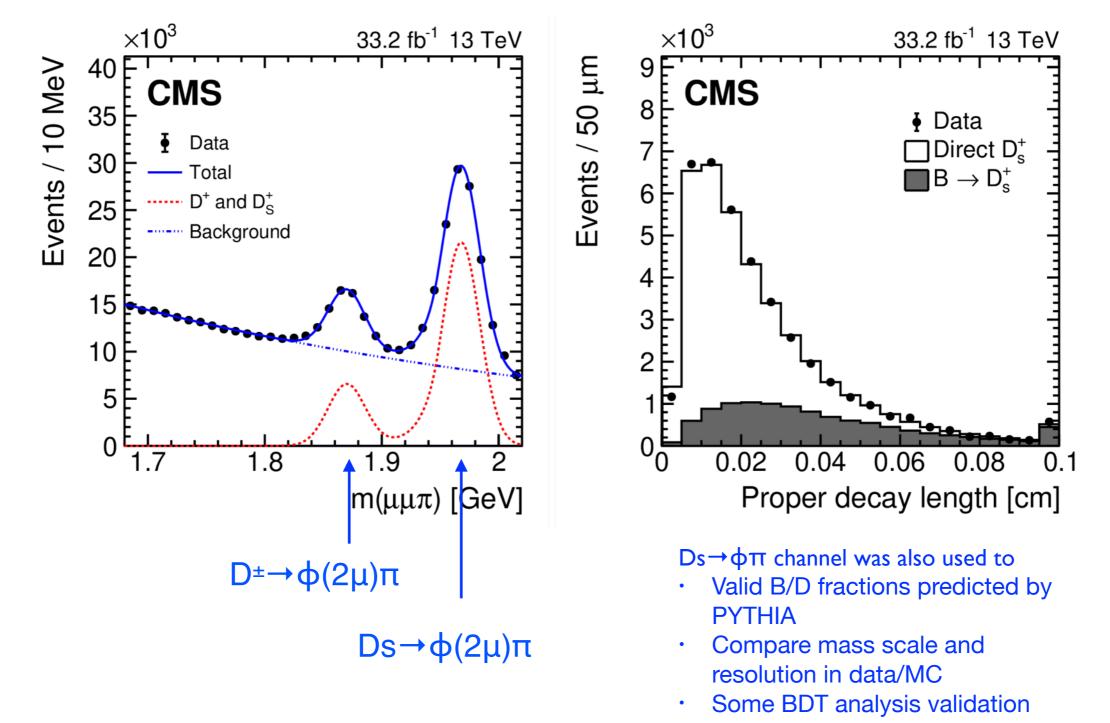
	Published result	Channel	Dataset	HL-LHC projection
LHCb	4.6 x 10 ⁻⁸	HF	3 fb ⁻¹ 7or 8 TeV	
ATLAS	38 x 10⁻ ⁸	W	20 fb⁻¹ 8 TeV	a few 10 ⁻⁹
CMS	8.0 x 10 ⁻⁸	W+HF	33 fb ⁻¹ 13 TeV	a few 10 ⁻⁹

- HL-LHC is a prolific source of tau-leptons (6×10^{14})
- LHC experiment analyses are not limited by the number of taus, but rather by how well to separate signal and background
- Belle-II projection for 50 $ab^{-1}B(\tau \rightarrow 3\mu) < 4 \times 10^{-10}$ [PoSFPCP2015 (2015) 049]
 - Breakthrough in analysis techniques is required for LHC experiments in order to compete

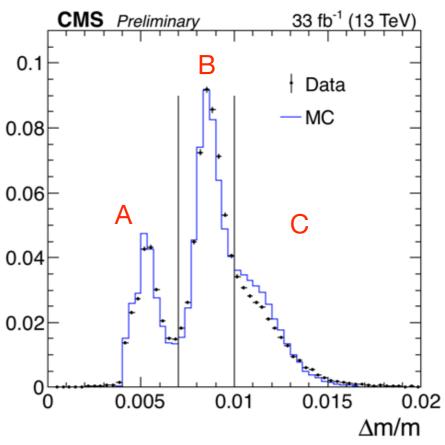


LHCb trigger

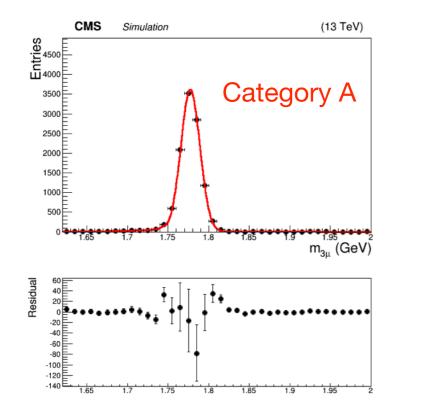
The trigger 13 consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. Candidate events are first required to pass the hardware trigger, which selects muons with a transverse momentum $p_{\rm T} > 1.48 \,\text{GeV}/c$ in the 7 TeV data or $p_{\rm T} > 1.76 \,\text{GeV}/c$ in the 8 TeV data. In the software trigger, at least one of the final-state particles is required to have both $p_{\rm T} > 0.8 \,\text{GeV}/c$ and IP > 100 µm with respect to all of the primary pp interaction vertices (PVs) in the event. Finally, the tracks of two or more of the final-state particles are required to form a vertex that is significantly displaced from the PVs.

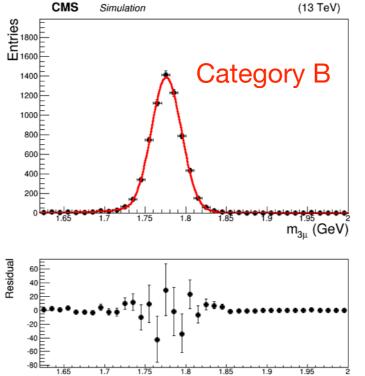

ATLAS trigger

To maximise the signal acceptance times efficiency, events are required to pass at least one of seven triggers. These are six multi-muon triggers and one dimuon plus E_T^{miss} trigger. The software-based trigger thresholds used for the muons range from 4 to 18 GeV in transverse momentum while the E_T^{miss} threshold is 30 GeV. The trigger efficiency for simulated signal events within the muon-trigger acceptance (three generator-level muons with $p_T > 2.5$ GeV and $|\eta| < 2.4$) is ~ 31% for the combination of all triggers used in the analysis. To evaluate the trigger performance in the region where the muons have a small

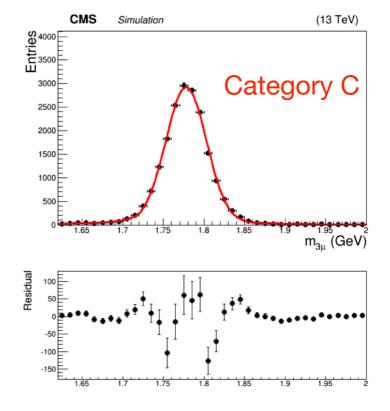

The control channel $Ds \rightarrow \phi \pi \rightarrow (2\mu)\pi$

The Ds rate is measured using the control channel




Event categorisation based on mass resolution

The three parts strongly correlated with Inner Tracker barrel, overlap and endcap regions


Signal shapes fit using Crystal Ball +Gaussian

CMS

Simulation

