

|∆B| = 2 in chiral effective field theory Bingwei Long

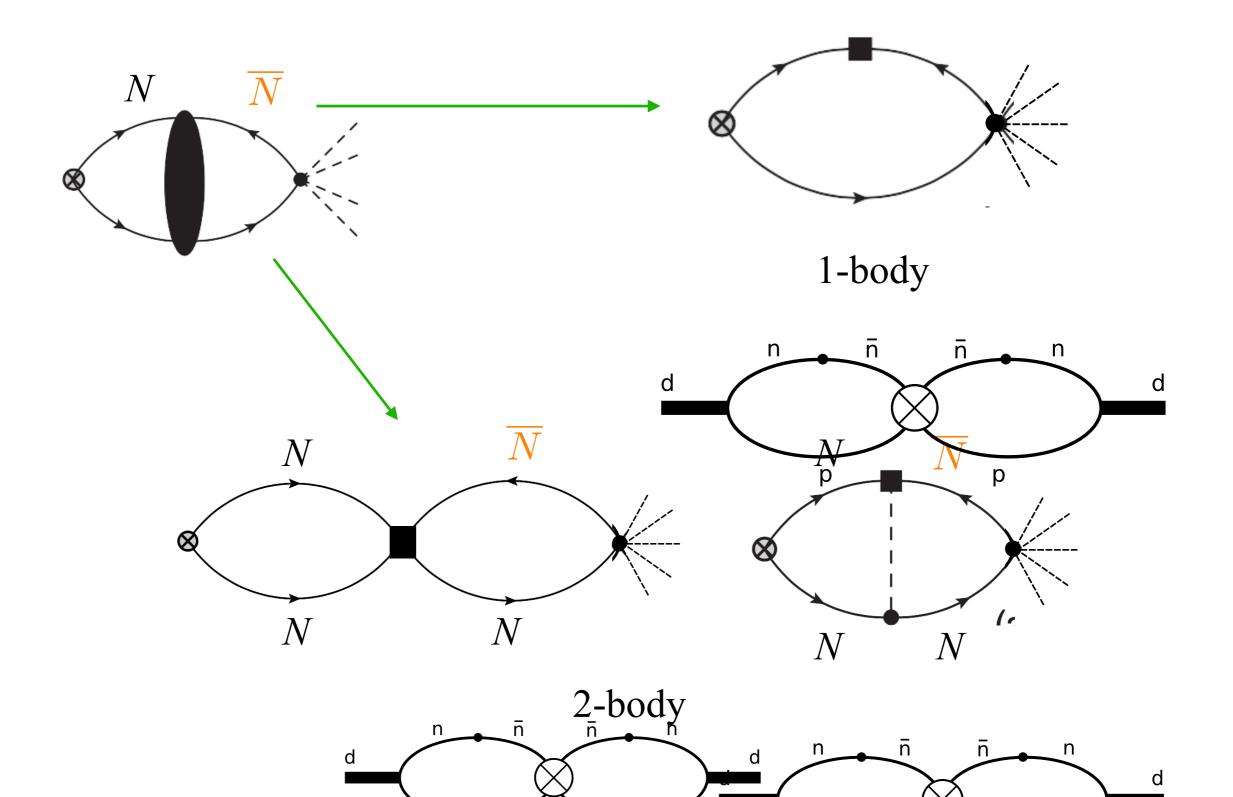
Sichuan University

In collaboration with Femke Oosterhof, Jordy de Vries, Rob Timmermans, Bira van Kolck (1902.05342)

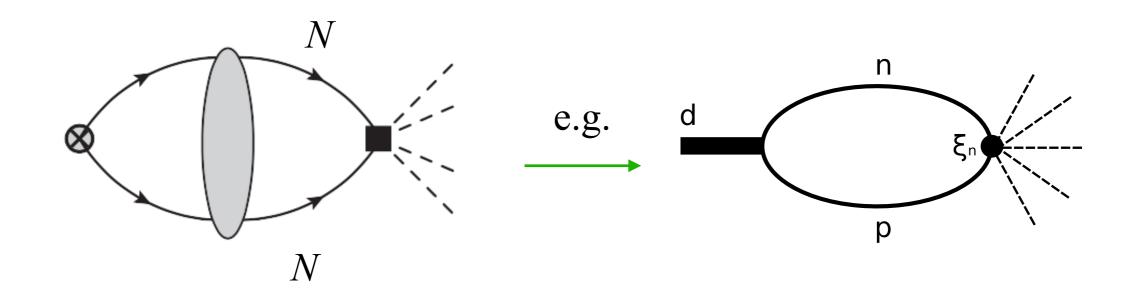
$|\Delta B| = 2$ nuclear physics

BSM		$\Lambda_{ \Delta B =2}$	10? TeV	Mohapatra, Marshak '80 Arnold, Fornal, Wise '13 Bell, Corbett, Nee, Ramsey- Mulsolf '19
	Standard M	$M_{ m H}$	100 GeV	
		Λ_χ	1 GeV	chiral sym. breaking
	 chiral EFT we use this perturbative p 	Λ_{nuc}	~ 100 MeV	avg. nucleon momentum inside nuclei
		pion Q_D	45 MeV	
		$1/a_{1S0}$	8 MeV	

$NN \rightarrow NNbar$



Direct NN annihilation

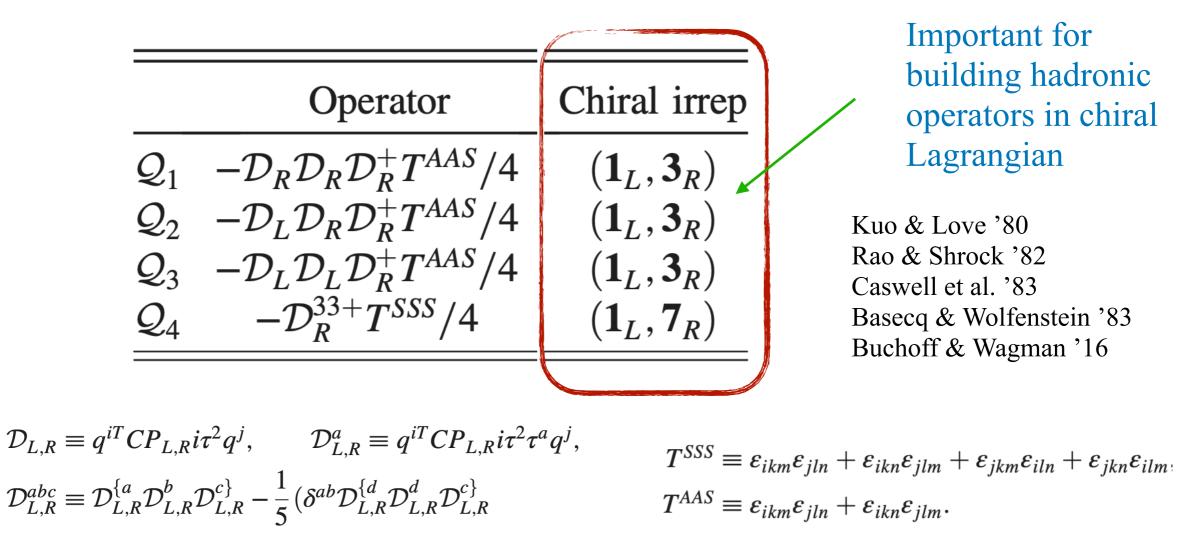


• To what extent can we disentangle these mechanisms?

Four Dim-9 operators

- SM gauge invarian $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$
- 6-quark operators to produce $|\Delta B| = 2$

 $+\delta^{ac}\mathcal{D}_{I_{R}}^{\{d}\mathcal{D}_{I_{R}}^{b}\mathcal{D}_{I_{R}}^{d\}}+\delta^{bc}\mathcal{D}_{I_{R}}^{\{a}\mathcal{D}_{I_{R}}^{d}\mathcal{D}_{I_{R}}^{d\}}),$



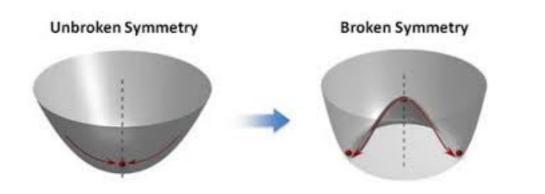
Chiral EFT

 Includes all symmetries of QCD, especially (approximate) chiral symmetry and its spontaneous breaking

$$\mathcal{L}_{\text{QCD}} = \sum_{f = u, d, s, \atop r \neq 0} \bar{q}_f (i \not D - m_f) q_f - \frac{1}{4} \mathcal{G}_{a \mu \nu} \mathcal{G}_a^{\mu \nu}$$
$$q_L \equiv \begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix} \mapsto \left(\mathbf{SU(3)}_L \right) \begin{pmatrix} u_L \\ d_L \\ s_L \end{pmatrix} \qquad q_R \equiv \begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix} \mapsto \left(\mathbf{SU(3)}_R \right) \begin{pmatrix} u_R \\ d_R \\ s_R \end{pmatrix}$$

• Only two flavors used in present work

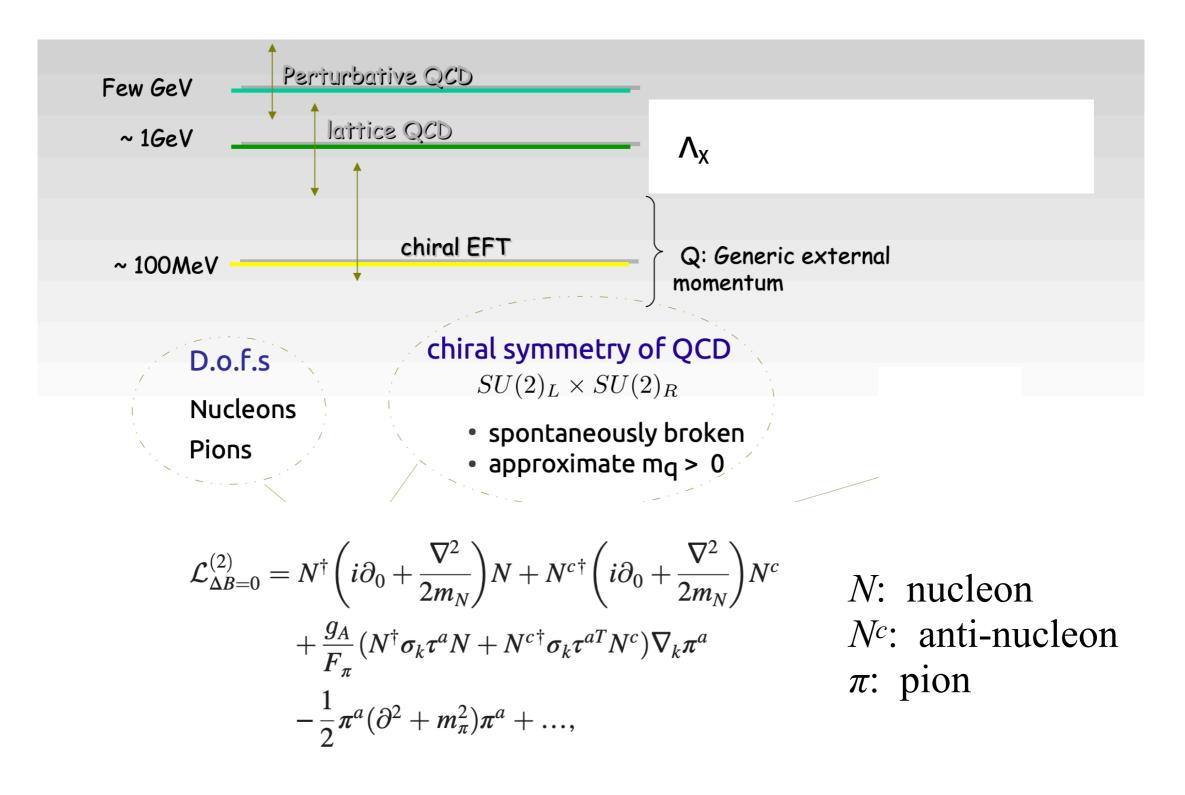
Lagrangian invariant when $m_f \rightarrow 0$, but broken by QCD ground state



CCWZ; Weinberg; ...

→ chiral symmetry nonlinearly realized by hadronic Dofs

• Chiral L: a hadronic Lagrangian to respect chiral sym. and its spontaneous breaking



Goal

Low-energy approximation of QCD, expansion in Q/M_hi
 Q:(small momenta), M_hi ~ 1GeV

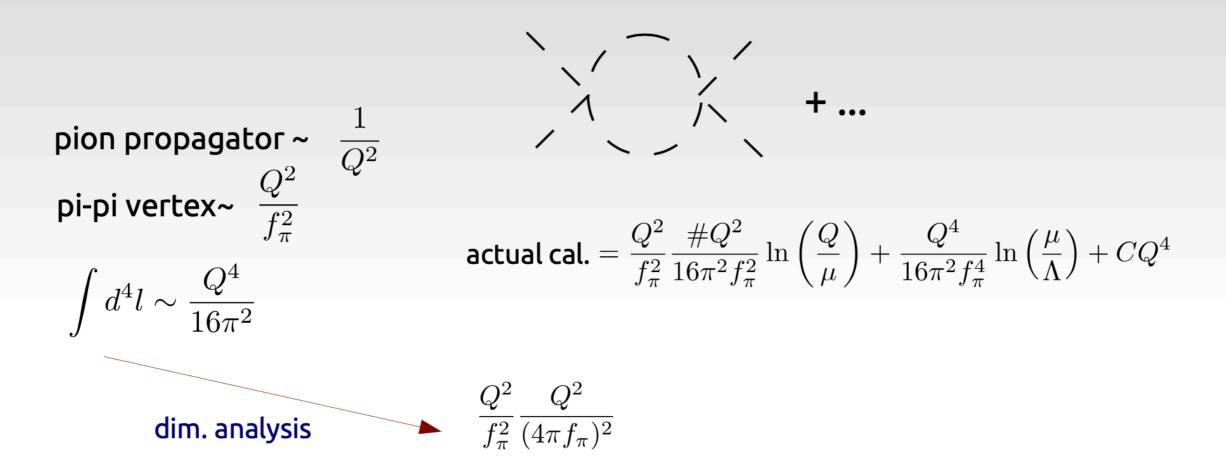
$$\mathcal{M} = \sum_{n} \left(\frac{Q}{M_{hi}}\right)^{n} \mathcal{F}_{n}\left(\frac{Q}{M_{lo}}\right)$$

Q: generic external momenta, $M_{hi} = \Lambda_{SB}, m_{
ho}, \dots \sim 1 \text{GeV}$ $M_{lo} = m_{\pi}, f_{\pi} \sim 100 \text{MeV}$

Systematic approximation → able to estimate theoretical errors

Power of counting

Q: generic external momenta

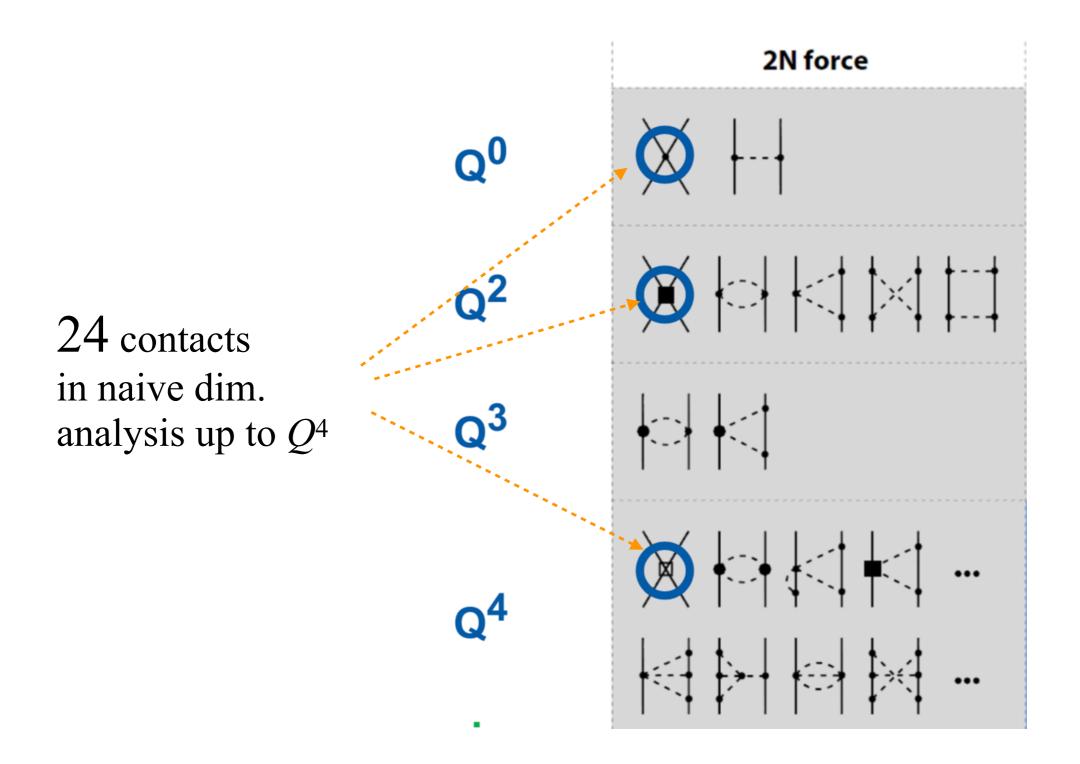


Dim. analysis captures long-range phys (non-analytic in Q) very well

Imposing naturalness \rightarrow counterterms and logs contribute about the same

$$\frac{Q^2}{f_{\pi}^2} \frac{\#Q^2}{16\pi^2 f_{\pi}^2} \ln\left(\frac{Q}{\mu}\right) \simeq \frac{Q^4}{16\pi^2 f_{\pi}^4} \ln\left(\frac{\mu}{\Lambda}\right) + CQ^4 \qquad C \sim \frac{1}{f_{\pi}^2 (4\pi f_{\pi})^2}$$

How to count size of LECs?



Renormalization group invariance

- In practice, UV cutoff Λ or ren. scale μ independence
 - $C \to C(\Lambda) e^{-\frac{p'^2 + p^2}{\Lambda^2}}$

- Start with a power counting by NDA
- If it provides enough short-range LECs to absorb UV div, then it is acceptable
- Used to show three-body force is leading order in pionless EFT (Bedaque, Hammer & van Kolck '99 & '00)

One more trick

- NNbar annihilation releases 2GeV kinetic energy, way beyond chiral EFT break down scale
- To get around, calculate deuteron life time by imaginary part of deuteron self energy
- hard pions integrated out as intermediate states

More Lagrangian terms

$$\mathcal{L}_{\Delta B=0}^{(4)} = \underbrace{-(C_0 + D_2 m_{\pi}^2)(N^T P_i N)^{\dagger}(N^T P_i N)}_{+ \frac{C_2}{8}[(N^T P_i N)^{\dagger}(N^T P_i (\vec{\nabla} - \vec{\nabla})^2 N) + \text{H.c.}]}_{-H_0(N^{cT} \tau^2 Y_i^a N)^{\dagger}(N^{cT} \tau^2 Y_i^a N) + \dots},$$

$$\underbrace{\overline{N}}_{N} \underbrace{\overline{N}}_{N} \underbrace{N}_{N}$$
NN contacts

NNbar contacts

$|\Delta B| = 2$ terms

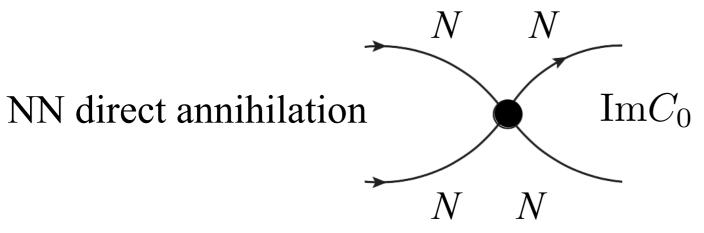
(For LQCD calculation on delta m, Rinaldi et al. '18 & '19)

$$\mathcal{L}_{|\Delta B|=2}^{(2)} = -\delta m \, n^{c^{\dagger}} n + \text{H.c.} + \dots,$$

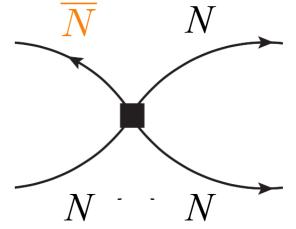
$$\tau_{n\bar{n}} = (\delta m)^{-1} [1 + \mathcal{O}(m_{\pi}^2/\Lambda_{\chi}^2)]$$

$$\mathcal{L}_{|\Delta B|=2}^{(4)} = i \tilde{B}_0 [(N^T P_i N)^{\dagger} (N^{cT} \tau^2 Y_i^- N) - \text{H.c.}] + \dots,$$

$$NN \Leftrightarrow N\bar{N} \text{ integration}$$

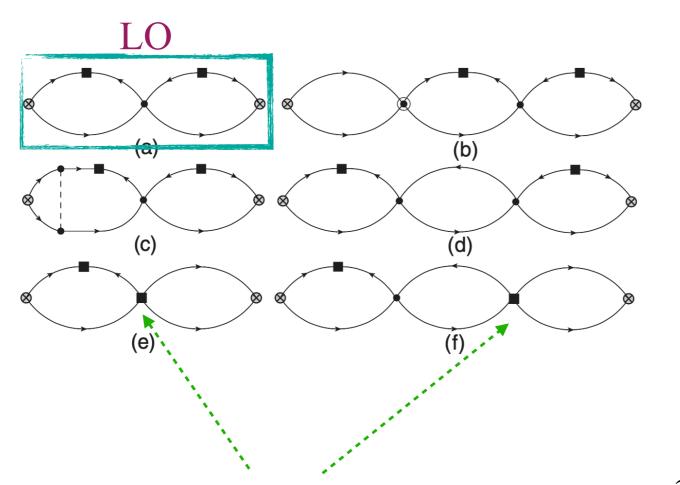


nnbar oscillation



teractions

Deuteron self energy up to NLO



Perturbative pion counting rule (Kaplan, Savage & Wise PLB 424, 390 (98))

expansion parameter

$$\frac{\kappa_d}{F_\pi} \simeq 0.24$$

 κ_d : deuteron binding mometum ~ 45 MeV

- By RG analysis, $NN \rightarrow NNbar$ appears at NLO $\rightarrow B_0$
- Range correction of *NN* interaction (B-conserving)
- NNbar interaction parametrized by (anti-n p) scattering length $a_{nbar-p} = (0.44 i \ 0.96)$ fm (Zhou & Timmermans '12 & '13)

Finally...

$$R_{d} \equiv \Gamma_{d}^{-1} / \tau_{n\bar{n}}^{2}$$

$$R_{d} = -\left[\frac{m_{N}}{\kappa} \operatorname{Im} a_{\bar{n}p} (1 + 0.40 + 0.20 - 0.13 \pm 0.4)\right]^{-1}$$

$$= (1.1 \pm 0.3) \times 10^{22} \text{ s}^{-1}.$$

- Perturbative pion allows for analytic expression
- Loosely bound neutron helps sensitivity (nuclei with neutron halo?)
- B₀ gives largest uncertainty
- W/ nonperturbative pion EFT, unknown LECs may have smaller impact