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Motivations

Producing the observed baryon asymmetry in the universe requires interactions that
violate baryon number, B (as well as CP violation and deviation from thermal
equilibrium) (Sakharov, 1967).

Suggestion of n− n̄ transitions as a mechanism involved in generating baryon
asymmetry in the universe (Kuzmin, 1970).

Standard Model (SM) conserves B perturbatively. SU(2) instantons produce
nonperturbative violation of B and L, while conserving B − L (’t Hooft, 1976), but
this is negligible (exponentially small) at temperatures low compared with the
electroweak scale (Kuzmin, Rubakov, Shaposhnikov, 1985).

Since (anti)quarks and (anti)leptons are placed in same representations in grand unified
theories (GUT’s), the violation of B and L is natural in these theories. Besides proton
decay, n− n̄ oscillations can occur and may be the dominant manifestation of baryon
number violation (Glashow, 1980; Mohapatra and Marshak, 1980).

Some other early work: Chang+Chang, Kuo+Love, Cowsik+Nussinov, Rao+RS,...



A continuing question about B is whether it is just a global symmetry or whether it is
gauged. In the SM and the SU(5) GUT, B is a global symmetry, while in the left-right
symmetric (LRS) theory with gauge group (Mohapatra, Marshak, Senjanović, 1975...)

GLRS = SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

B − L is gauged. Electric charge in SM: Qem = T3L + (Y/2); in LRS theory,

Qem = T3L + T3R +
B − L

2

Further embedding of SU(3)c ⊗ U(1)B−L in SU(4) (Pati-Salam): gauge group
SU(4) ⊗ SU(2)L ⊗ SU(2)R, and as SO(6) ⊗ SO(4) in SO(10) GUT.

Lepton number L is a global symmetry in the original SM. Neutrino masses and lepton
mixing are confirmed physics beyond the SM; the most natural mechanism to explain
light neutrino masses is the seesaw mechanism, which involves a combination of Dirac

mass terms ν̄iLM
(D)
ij νj,R + h.c. and Majorana mass terms νTi,RCM

(R)
ij νj,R + h.c.;

the Majorana terms break L, as ∆L = 2 operators.

The occurrence of ∆L = 2 operators, possibly at a low-scale, in neutrino mass models
gives further motivation to explore the possibility that there might also be ∆B = 2



operators at scales well below a GUT scale. This is particularly natural in models with a
gauged U(1)B−L, containing Higgs with |B − L| = 2, whose vacuum expectation
values (VEVs) thus lead to both |∆L| = 2 and |∆B| = 2 processes.

These are good motivations for new experimental searches for n− n̄ oscillations and
associated ∆B = −2 dinucleon decays as well as proton and bound neutron decay, as
manifestations of baryon number violation (BNV).

Plan for n− n̄ search exp. at European Spallation Source, ESS, also including search
for n conversion via mirror n′: n → [n′, n̄′] → n̄ (Adazzi et al., arXiv:2006.04907)
and latter search also at High Flux Isotope Reactor, HIFR, at ORNL ( e.g. Broussard et
al., arXiv:1912.08264; talk by Yuri Kamyshkov); here we focus on n− n̄ oscillations.

Continuing searches for ∆B = −2 dinucleon decays at Super-K and in future at
Hyper-K and DUNE.



General Formalism

n− n̄ Oscillations in Field-Free Vacuum:

CPT: 〈n|Heff |n〉 = 〈n̄|Heff |n̄〉 = mn − iλn/2, where Heff denotes
relevant Hamiltonian and λ−1

n = τn = 0.88 × 103 sec. Heff may also mediate
n ↔ n̄ transitions: 〈n̄|Heff |n〉 ≡ δm. Consider the matrix in (n, n̄) basis:

M =

(

mn − iλn/2 δm
δm mn − iλn/2

)

Diagonalizing M yields mass eigenstates

|n±〉 =
1
√
2
(|n〉 ± |n̄〉)

with mass eigenvalues m± = (mn ± δm) − iλn/2.

So if start with pure |n〉 state at t = 0, then there is a finite probability P for it to be
an |n̄〉 at t 6= 0:

P (n(t) = n̄) = |〈n̄|n(t)〉|2 = [sin2(t/τnn̄)]e
−λnt

where τnn̄ = 1/|δm|.



General Formalism for n− n̄ Oscillations

In the (n, n̄) basis, write

M =

(

M11 δm
δm M22

)

Diagonalization yields mass eigenstates

(

|n1〉
|n2〉

)

=

(

cos θ sin θ
− sin θ cos θ

)(

|n〉
|n̄〉

)

where

tan(2θ) =
2δm

∆M

and ∆M = M11 −M22. The energy eigenvalues are

E1,2 =
1

2

[

M11 +M22 ±
√

(∆M)2 + 4(δm)2
]



Let ∆E = E1 − E2 =
√

(∆M)2 + 4(δm)2; transition probability:

P (n(t) → n̄) = |〈n̄|n(t)〉|2 = sin2(2θ) sin2[(∆E)t/2] e−λnt

=

[

(δm)2

(∆M/2)2 + (δm)2

]

sin2
[

√

(∆M/2)2 + (δm)2 t
]

e−λnt

N.B.: if
√

(∆M/2)2 + (δm)2 t << 1, then by expanding the sin, the quantity
(∆M/2)2 + (δm)2 cancels, so

P (n(t) → n̄) ≃ [(δm)t]2 e−λnt = (t/τnn̄)
2 e−λnt

Although ∆M = 2~µn · ~B, where ~B is a small residual magnetic field in a reactor
exp., this inequality enables exp. to be sensitive to δm.

Most sensitive reactor n− n̄ exp. done with ILL High Flux Reactor (HFR) at Grenoble
(Baldo-Ceolin, Fidecaro,.., 1985-1994, obtaining limit τnn̄ ≥ 0.86 × 108 sec (90 %
CL).



n− n̄ Oscillations in Matter:

For n− n̄ oscillations involving a neutron bound in a nucleus, consider

M =

(

mn,eff. δm
δm mn̄,eff.

)

with

mn,eff = mn + Vn , mn̄,eff. = mn + Vn̄

where the nuclear potential Vn is real, Vn = VnR, but Vn̄ has an imaginary part
representing the n̄N annihilation: Vn̄ = Vn̄R − iVn̄I with
VnR, Vn̄R, Vn̄I ∼ O(100) MeV (Dover, Gal, Richard; Friedman; recently work by
Barrow, Golubeva, Ladd, Paryev, Richard for 12C (ESS) and 40Ar (DUNE)).

Mixing is thus strongly suppressed; tan(2θ) is determined by

2δm

|mn,eff. −mn̄,eff.|
=

2δm
√

(VnR − Vn̄R)2 + V 2
n̄I

<< 1

Using the reactor exp. bound on |δm|, this gives |θ| <∼ 10−31. This suppression in
mixing is compensated for by the large number of nucleons in a nucleon decay detector,
∼ 1033 n’s in Super-K.



Eigenvalues:

m1,2 =
1

2

[

mn,eff. +mn̄,eff. ±
√

(mn,eff. −mn̄,eff.)2 + 4(δm)2
]

Expanding m1 for the mostly n mass eigenstate |n1〉 ≃ |n〉,

m1 ≃ mn + Vn − i
(δm)2 Vn̄I

(VnR − Vn̄R)2 + V 2
n̄I

Imaginary part leads to matter instability, mainly via n̄n, n̄p → π’s, with rate

Γm.i. =
1

τm.i.
=

2(δm)2|Vn̄I|
(VnR − Vn̄R)2 + V 2

n̄I

So τm.i. ∝ (δm)−2 = τ 2
nn̄.

Writing τm.i. = Rτ 2
nn̄, one has R ∼ O(100) MeV, dependent on nucleus.

With ~ = 6.6 × 10−22 MeV-sec, equiv. R ∼ 1023 sec−1.



Searches for matter instability due to n− n̄ oscillations with large nucleon decay
detectors are complementary to searches with free neutrons at reactors or spallation
sources.

Current best published bound: τm.i. > 1.9 × 1032 yrs, giving

τnn̄ > 2.7 × 108 sec from Super-K (2015)

preliminary new limit from Super-K: τm.i. > 3.6 × 1032 yrs (talk by L. Wan for

Super-K); with same R factor, yields τnn̄ >∼ 5 × 108 sec.

The future n− n̄ search experiment at ESS should significantly improve this limit or
observe a signal.



n− n̄ Oscillations in an Extra-Dimensional Model

We discuss a model in which proton decay can easily be suppressed well below
experimental limits while n− n̄ oscillations can occur at level comparable to existing
limits. (Nussinov and RS, PRL 88, 171601 (2002) and recent work with S. Girmohanta).

Extra spatial dimensions have been of interest since Kaluza and Klein and received
renewed attention with the development of string theory.

Consider a model with a d = 4 + n dimensional spacetime, with n extra spatial
dimensions. Denote usual spacetime coords. as xν, ν = 0, 1, 2, 3 and consider n
extra compact coordinates, yλ with 0 ≤ yλ ≤ L, i.e., size of extra dimension(s) is L.

Each SM fermion f has the form

Ψf(x, y) = ψf(x)χf(y)

with strong localization at a point yf in the extra dimensions, with a Gaussian profile of
half-width Lµ ≡ µ−1 << L:

χf(y) = Ae−µ
2‖y−yf‖2 = Ae−‖η−ηf‖2

where ‖yf‖ = (
∑n

λ=1 y
2
f,λ)

1/2, A is a normalization constant, and we define a
convenient dimensionless variable ηf = µyf .



Such models are of interest partly because they can provide a mechanism for obtaining
a generational hierarchy in fermion masses and quark mixing.

We use a low-energy effective field theory (EFT) approach with an ultraviolet cutoff
M∗, where M∗ > µ for self-consistency. Consider only lowest relevant mode in the
Kaluza-Klein (KK) mode decompositions of each Ψ field.

Starting from the Lagrangian in the d-dimensional spacetime, one obtains the resultant
low-energy EFT in 4D by integrating over the extra n dimension(s). For canonical
normalization of thd 4D fermion kinetic term,

A =
(2

π

)n/4

µn/2

The localization is achieved by coupling to auxiliary “localizer” scalar fields with kink
form for n = 1, and similarly for higher n (Arkani-Hamed + Schmaltz;
Mirabelli+Schmaltz, 2000). Higgs fields are taken flat in extra dims.

Define ΛL = 1/L; take Λ ∼ 102 TeV, Lµ ∼ L/30; this gives adequate separation
of fermions while fitting in interval [0, L], consistent with precision electroweak data,
collider bounds, flavor-changing neutral current constraints.

With ΛL = 102 TeV, this yields µ ∼ 3 × 103 TeV.



Given the localization of fermion wavefunctions on scale Lµ << L, in the integration

over the extra dimensions, can extend
∫ L

0 →
∫∞
−∞ to good approximation.

Integrals over extra dimensions have the general form (with
∫

dnη =
∫∞
−∞ d

nη)

∫

dnη exp
[

−
m
∑

i=1

ai‖η − ηfi‖2
]

=

[

π
∑m

i=1 ai

]n/2

exp

[

−∑m
j,k=1; j<k ajak‖ηfj − ηfk‖2

∑m
s=1 as

]

.

For example, for m = 3,

∫

dnη exp
[

−
(

a1‖η − ηf1‖2 + a2‖η − ηf2‖2 + a3‖η − ηf3‖2
)]

=

=

[

π

a1 + a2 + a3

]n/2

exp

[−
(

a1a2‖ηf1 − ηf2‖2 + a2a3‖ηf2 − ηf3‖2 + a3a1‖ηf3 − ηf1‖2
)

a1 + a2 + a3

]

.

If only one fermion involved in integrand, then no exponential suppression:

∫

dnη exp
[

− a1‖η − ηf1‖2
]

=

[

π

a1

]n/2



A Yukawa interaction in the d-dimensional space with coefficients of order unity and
moderate separation of localized fermion wavefunction centers yields a strong hierarchy
in the low-energy 4D Yukawa interaction,

∫

dny χ̄(yfL)χ(yfR) ∼
∫

dnη e−‖η−ηfL‖
2
e−‖η−ηfR‖2 ∼ e−(1/2)‖ηfL−ηfR‖2

Resultant fermion masses mf :

mf ≃ h(f) v
√
2
exp

[

− 1

2
‖ηfL − ηfR‖2

]

,

where v/
√
2 is SM Higgs VEV. With h(f) ≃ 1, produce fermion generational

hierarchy via different separation distances ‖ηfL − ηfR‖ for different generations.

Leading nucleon decay operators are of the form qqqℓ. Hence, one can suppress
nucleon decay well below experimental limits by arranging that the wavefunction centers
of the u and d quarks are separated far from those of the leptons.

Key point: this does not suppress n− n̄ oscillations because the n− n̄ transition
operators do not involve leptons.



For example, one nucleon decay operator is (with ℓ = e, µ)

O(Nd)
1 = ǫαβγ[u

α T
R CdβR][u

γ T
R CℓR]

where α, β, γ are SU(3)c color indices.

The product of y-dependent fermion wavefunctions in this operator is

A4 exp
[

−
{

2‖η − ηuR‖2 + ‖η − ηdR‖2 + ‖η − ηℓR‖2
}]

The integral over y yields

I
(Nd)
1 = b4 exp

[

− 1

4

{

2‖ηuR − ηdR‖2 + 2‖ηuR − ηℓR‖2 + ‖ηdR − ηℓR‖2
}

]

where b4 = (µ/
√
π)n.

One can guarantee that this is sufficiently small by taking the distances between
wavefunction centers ‖ηuR − ηℓR‖ and/or ‖ηdR − ηℓR‖2 sufficiently large.

Similarly for other nucleon decay operators.



Analyze n− n̄ oscillations: with H
(nn̄)
eff =

∫

d3xH(nn̄), δm = 〈n̄|H(nn̄)
eff |n〉.

In d = 4 dims., effective Lagrangian

L(nn̄)
eff (x) =

∑

r

c(nn̄)r O(nn̄)
r (x) + h.c. .

Correspondingly, in d = 4 + n dimensions,

L(nn̄)
eff,4+n(x, y) =

∑

r

κ(nn̄)
r O(nn̄)

r (x, y) + h.c. .

where the O(nn̄)
r (x) and O(nn̄)

r (x, y) are 6-quark operators in d = 4 and
d = 4 + n dims. Coeffs. κ(nn̄)

r = κ̄(nn̄)
r /M 5+2n

nn̄ , where Mnn̄ is an effective mass
characterizing the physics responsible for the n− n̄ oscillation. Can set κ̄(nn̄)

r = 1 for
the dominant O(nn̄)

r in defining Mnn̄.

Integration of fermion wavefunctions in the O(nn̄)
r (x, y) over y yield the coeffs. c(nn̄)r

in terms of κ(nn̄)
r



Operators O(nn̄)
r must be color singlets and, for Mnn̄ larger than the electroweak

symmetry breaking scale, also SU(2)L × U(1)Y -singlets. Relevant operators in SM
EFT:

O(nn̄)
1 = (Ts)αβγδρσ[u

αT
R CuβR][d

γT
R Cd

δ
R][d

ρT
R Cd

σ
R]

O(nn̄)
2 = (Ts)αβγδρσ[u

αT
R CdβR][u

γT
R Cd

δ
R][d

ρT
R Cd

σ
R]

O(nn̄)
3 = (Ta)αβγδρσǫij[Q

iαT
L CQjβ

L ][uγTR Cd
δ
R][d

ρT
R Cd

σ
R]

O(nn̄)
4 = (Ta)αβγδρσǫijǫkm[Q

iαT
L CQjβ

L ][QkγT
L CQmδ

L ][dρTR Cd
σ
R]

where QL =
(u
d

)

L
, i, j.. are SU(2)L indices, and color tensors are

(Ts)αβγδρσ = ǫραγǫσβδ + ǫσαγǫρβδ + ǫρβγǫσαδ + ǫσβγǫραδ

(Ta)αβγδρσ = ǫραβǫσγδ + ǫσαβǫργδ

(Ts)αβγδρσ is symmetric in the indices (αβ), (γδ), (ρσ).

(Ta)αβγδρσ is antisymmetric in (αβ) and (γδ) and symmetric in (ρσ).



The integrals of these operators over y comprise three classes: operators O
(nn̄)
1 and

O
(nn̄)
2 yield the integral

I
(nn̄)
r12 = b6 exp

[

− 4

3
‖ηuR − ηdR‖2

]

,

O
(nn̄)
3 yields the integral

I
(nn̄)
r3 = b6 exp

[

− 1

6

{

2‖ηQL − ηuR‖2 + 6‖ηQL − ηdR‖2 + 3‖ηuR − ηdR‖2
}

]

.

O
(nn̄)
4 yields the integral

I
(nn̄)
r4 = b6 exp

[

− 4

3
‖ηQL − ηdR‖2

]

.

where b6 = (2 · 3−1/2 π−1µ2)n.

The coeffs. c(nn̄)r = κ̄(nn̄)
r /(Mnn̄)

5 times these I(nn̄)r integrals.



Consider, e.g., case n = 2: one can fit data on quark masses, mixing with

‖ηQL − ηuR‖ = 4.75, ‖ηQL − ηdR‖ ≃ 4.60

‖ηuR − ηdR‖ ≃ 7

We find that the |c(nn̄)r | for r = 1, 2, 3 are << |c(nn̄)4 |, and hence we focus on c
(nn̄)
4 :

To leading order (neglecting small CKM mixings), ‖ηQL − ηdR‖ is determined by md

via relation (with Higgs vev v = 246 GeV)

md = hd
v
√
2

with
hd = hd,0 exp[−(1/2)‖ηQL − ηdR‖2]

where hd,0 is the Yukawa coupling in (4 + n)-dims. so that

exp
[

−(1/2)‖ηQL − ηdR‖2
]

=
21/2md

hd,0v

With hd,0 ∼ 1



δm ≃ c
(nn̄)
4 〈n̄|O(nn̄)

4 |n〉 ≃
(

4µ4

3π2M 9
nn̄

)

(

21/2md

v

)8/3

〈n̄|O(nn̄)
4 |n〉

Requiring that τnn̄ = 1/|δm| agree with the published lower limit from Super-K,
τnn̄ > 2.7 × 108 sec. yields the lower bound on the mass scale of n− n̄ oscillations:

Mnn̄ > (44 TeV)
( τnn̄

2.7 × 108 sec

)1/9 ( µ

3 × 103 TeV

)4/9
(|〈n̄|O(nn̄)

4 |n〉|
Λ6
QCD

)1/9

.

where ΛQCD = 0.25 GeV. This bound is not very sensitive to the precise size of

〈n̄|O(nn̄)
4 |n〉 because of the 1/9 power in the exponent.

O(nn̄)
4 = −Q3 in notation of lattice QCD calculation (Rinaldi, Syritsyn, Wagman,

Buchoff, Schroeder, Wasem, 2019), with LQCD matrix element
|〈n̄|Q3|n〉| ≃ 5 × 10−4 GeV6 = 2Λ6

QCD; substituting this yields factor

21/9 = 1.08 so lower bound is (1.08)44 TeV = 48 TeV.

Previous Super-K lower limit τm.i. > 1.9 × 1032 yrs, yielding τnn̄ > 2.7 × 108 sec.
New preliminary limit τm.i. > 3.6× 1032 yrs gives ∼ 2 increase in lower limit on τnn̄,
yielding a factor of 21/9 increase, so LHS becomes 51 TeV.



Hence, for relevant values ofMnn̄ in this model, n− n̄ oscillations could occur at
levels that are close to the current limit.

This model also illustrates how baryon number violation can occur via n− n̄
oscillations with strongly suppressed proton decay.

Other models can predict n− n̄ oscillations near to current limits
(Mohapatra+Marshak, 1980; Rao-RS, 1984; Babu+Mohapatra, 2001; Babu,
Mohapatra, Nasri, Bhupal Dev 2006-present (talks by Mohapatra, Babu); Arnold,
Fornal, Wise (2013); Fileviez Perez... In several of these models, nucleon decay is
absent or suppressed so that n− n̄ oscillations are main manifestation of BNV.

An interesting question is what are the implications in this model for nucleon and
dinucleon decays to various dilepton and trilepton final states with
∆L = −3,−2, 1, 2. See talk by S. Girmohanta.



n− n̄ Oscillations in an Extra-Dimensional Model with
GLRS Gauge Group

We have also studied n− n̄ oscillations in an extra-dimensional model with the gauge
group GLRS = SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L

in Girmohanta + RS, PRD 101, 095012 (2020) [arXiv:2003.14185].

This model provides a useful contrast to the previous study because in the SM the
n− n̄ oscillations do not break the SM gauge symmetry, while in the LRS model, they
occur via the breaking of the U(1)B−L gauge symmetry.

Recall field content of LRS model (Mohapatra, Pati, Senjanović, 1975...) for fermions
(first gen.):

QL =

(

u

d

)

L

: (3, 2, 1)1/3,L , QR =

(

u

d

)

R

: (3, 1, 2)1/3,R

LL =

(

νe

e

)

L

: (1, 2, 1)−1,L , LR =

(

νe

e

)

R

: (1, 1, 2)−1,R ,



Higgs sector:

Φ : (1, 2, 2)0 : Φ =

(

φ0
1 φ

+
1

φ−
2 φ0

2

)

.

∆L : (1, 3, 1)2, ∆R : (1, 1, 3)2

∆L,R =

(

∆+
L,R/

√
2 ∆++

L,R

∆0
L,R −∆+

L,R/
√
2

)

,

Minimization of Higgs potential yields VEVs

〈Φ〉0 =
1
√
2

(

κ1 0
0 κ2e

iθΦ

)

,

〈∆L〉0 =
1
√
2

(

0 0
vLe

iθ∆ 0

)

〈∆R〉0 =
1
√
2

(

0 0
vR 0

)

.



At highest scale, vR breaks SU(2)R ⊗ U(1)B−L → U(1)Y with
|∆(B − L)| = 2. This naturally yields n− n̄ oscillations and connects them with
the Majorana neutrino mass generation. So in this model,

Mnn̄ = vR

At electroweak level, κ, κ′ break SU(2)L ⊗ U(1)Y → U(1)em. Take
vL << κ, κ′ to preserve ρ = 1 where ρ = m2

W/(m
2
Z cos2 θW ).

Fermion fields are localized, while Higgs fields are taken flat in extra dims., as in SM
EFT (Arkani-Hamed + Schmaltz; Mirabelli+Schmaltz).

As in the SM EFT, nucleon decay can be suppressed well below experimental limits by
separating the wavefunction centers of the quarks from those of the leptons.

Since the adjoint rep. of SU(2) is the rank-2 symmetric tensor, can write ∆L as (∆L)
ij

and ∆R as (∆R)
i′j′, where i, j are SU(2)L indices and i′, j′ are SU(2)R indices.



O(nn̄)
r operators:

O
(nn̄)
1 = (Ts)αβγδρσ (ǫi′k′ǫj′m′ + ǫj′k′ǫi′m′)(ǫp′r′ǫq′s′ + ǫq′r′ǫp′s′)×

× [Qi′αT
R CQj′β

R ][Qk′γT
R CQm′δ

R ][Qp′ρT
R CQq′σ

R ] (∆†
R)

r′s′

O
(nn̄)
2 = (Ta)αβγδρσ ǫi′j′ǫk′m′ (ǫp′r′ǫq′s′ + ǫq′r′ǫp′s′)×

× [Qi′αT
R CQj′β

R ][Qk′γT
R CQm′δ

R ][Qp′ρT
R CQq′σ

R ] (∆†
R)

r′s′

O
(nn̄)
3 = (Ta)αβγδρσ ǫijǫk′m′ (ǫp′r′ǫq′s′+ǫq′r′ǫp′s′) [Q

iαT
L CQjβ

L ][Qk′γT
R CQm′δ

R ][Qp′ρT
R CQq′σ

R ] (∆†
R)

r′s′

O
(nn̄)
4 = (Ta)αβγδρσ ǫijǫkm (ǫp′r′ǫq′s′+ǫq′r′ǫp′s′) [Q

iαT
L CQjβ

L ][QkγT
L CQmδ

L ][Qp′ρT
R CQq′σ

R ] (∆†
R)

r′s′

O
(nn̄)
5 = (Ts)αβγδρσ(ǫikǫjm + ǫjkǫim)(ǫp′r′ǫq′s′ + ǫq′r′ǫp′s′)×

× [QiαT
L CQjβ

L ][QkγT
L CQmδ

L ][Qp′ρT
R CQq′σ

R ] (∆†
R)

r′s′

After sym. bk. of U(1)B−L, replace ∆R by VEV, vR.



In the same way as before, we obtain the low-energy 4D EFT by integrating the
operator products over the n extra dimensions.

Because O
(nn̄)
1 and O

(nn̄)
2 involve only one kind of fermion field (namely, QR), we find

that for these two operators the integral over y does not yield any exponential
(Gaussian) suppression factor. Coeffs. κ̄(nn̄)

r can naturally be ∼ O(1) in the model for
these operators.

This is in contrast to the SM EFT, where the integrals of all n− n̄ operators involved
exponential suppression factors.

Because of this, the constraint that this model should agree with the experimental
lower limit on τnn̄ imposes a more stringent lower bound on the scaleMnn̄ in this
model than in the SM EFT analysis:

Mnn̄ > max

[

(1 × 103 TeV)
( τnn̄

2.7 × 108 sec

)1/9

×
( µ

3 × 103 TeV

)4/9
(|κ̄(nn̄)

r 〈n̄|O(nn̄)
r |n〉|

Λ6
QCD

)1/9
]

, r = 1, 2



Some Results on Dinucleon Decays

As before, let the physics beyond the SM responsible for n− n̄ oscillations be encoded

in H
(nn̄)
eff .

The presence of a nonzero δm = 〈n̄|H(nn̄)
eff |n〉 transition matrix element gives rise to

some n̄ in a nucleus. The n̄ annihilates with a neighboring nucleon. The dominant final
states are hadronic, consisting of multiple pions, which then propagate out of the
nucleus.

The annihilation can also lead to leptonic final states. One can write down Feynman
diagrams for these by adding appropriate SM vertices and propagators to the basic n̄
annihilation process.

For example, for the ∆B = −2 dinucleon decays nn → ℓ+ℓ−, where ℓ = e, µ,
one has the Feynman diagrams:



Here the n− n̄ transition is indicated, followed by the annihilation to a virtual photon
or Z in the s channel. The diagram with the Z is ∼ GFm

2
N , and hence the photon

contribution is expected to be larger. So one has the estimate

Ann→ℓ+ℓ− ≃ (δm) e2 〈0|Jλem|nn̄〉
1

q2
[ū(p2)γλv(p1)] ,

The momenta q, p1, and p2 are of hadronic scales. The small n− n̄ factor that
produces the n̄n state and is common to hadronic and leptonic decays.

no phase space suppression for nn → 2π0 or nn → ℓ+ℓ−, ℓ = e, µ.



Hence, roughly, Γnn→ℓ+ℓ− ∼ e4 Γnn→2π0.

Using lower bounds on partial lifetimes τ/B = Γ−1 for this and other hadronic
dinucleon decay modes, one can then derive rough lower bounds on partial lifetimes for
these dinucleon-to-dilepton decays, and similarly for other leptonic final states.

We present estimates for these lower bounds in Girmohanta + RS, PLB 803, 135296
(2020) [arXiv:1910.08356] (see talk by Girmohanta); e.g., using Super-K limit
Γ−1
nn→2π0 > 4.04 × 1032 yr,

Γ−1
nn→ℓ+ℓ−

>∼ e−4Γ−1
nn→2π0

>∼ 5 × 1034 yr for ℓ = e, µ

Strengthened bounds on nn → e+e− and nn → µ+µ− in in Nussinov + RS, PRD,
in press [arXiv:2005.12493].

Direct experimental limits are not this strong, e.g., Γ−1
nn→e+e− > 4.2 × 1033 yrs,

Γ−1
nn→µ+µ− > 4.4 × 1033 yrs (Super-K, arXiv:1811.12430).



Conclusions

• General theoretical expectation that baryon number is violated, and this is borne out
in many BSM scenarios.

• n− n̄ oscillations are an interesting possible manifestation of baryon number
violation, of |∆B| = 2 type, complementary to proton decay. A discovery of
n− n̄ oscillations would be of profound significance.

•We have discussed two models that show how new physics beyond the SM can
produce n− n̄ oscillations at rates comparable with current limits. These models
also show that n− n̄ oscillations can be the main manifestation of baryon number
violation, since proton decay is strongly suppressed.

• These results provide motivation for new experiments to search for n− n̄
oscillations, including exp. at ESS - input to Snowmass 2021

• Further results on dinucleon decays

further questions/comments: can email to robert.shrock@stonybrook.edu as well as
Slack.



Extra Slides

n− n̄ Oscillations in a Magnetic Field ~B:

Relevant to Institut Laue-Langevin (ILL) and planned ESS experiments searching for
n− n̄ oscillations

n and n̄ interact with ~B via magnetic moment ~µ = µ~σ, µn = −µn̄ = κµN ,
where κ = −1.91, µN = e/(2mN) = 3.15 × 10−14 MeV/Tesla, so

M =

(

mn − ~µn · ~B − iλn/2 δm

δm mn + ~µn · ~B − iλn/2

)

So ∆M = M11 −M22 = −2~µn · ~B and diagonalization yields mass eigenstates
|n1〉, |n2〉, with mixing

tan(2θ) = − δm

~µn · ~B
and energy eigenvalues

E1,2 = mn ±
√

(~µn · ~B)2 + (δm)2 − iλn/2



ILL experiment reduced | ~B| = B to B ∼ 10−4 G = 10−8 T, so

|µn|B = (6.03 × 10−22 MeV)

(

B

10−8 T

)

Since |δm| <∼ 10−29 MeV << |µn|B from exp., it follows that

|θ| <∼ 10−8 << 1 and

∆E = 2

√

(~µn · ~B)2 + (δm)2 ≃ 2|~µn · ~B|

In a reactor n− n̄ experiment, arrange that n’s propagate a time t such that

|~µn · ~B|t = 0.92

(

B

10−8 T

)(

t

1 sec

)

<< 1 and t << τn

Then

P (n(t) → n̄) ≃ (2θ)2
(∆Et

2

)2

≃
(

δm

~µn · ~B

)2(

~µn· ~B t
)2

= [(δm) t]2 = (t/τnn̄)
2

and the experiment is sensitive to δm.



Strengthened Lower Bounds on partial lifetimes τ/B = Γ−1 for Dinucleon Decays to
Dileptons nn → e+e− and nn → µ+µ− (Nussinov and RS, Phys. Ref. D, in press
(arXiv:2005.12493])

We use e+e− and p̄p annihilation data to improve the lower bounds on these partial
lifetimes for the dinucleon decays to dileptons

Γn̄n→ℓ+ℓ−

Γn̄n→2π0

=

[
Γn̄n→ℓ+ℓ−
Γp̄p→ℓ+ℓ−
Γ
n̄n→2π0

Γ
p̄p→ 2π0

]

Γp̄p→ℓ+ℓ−

Γp̄p→2π0

=

[
Γn̄n→ℓ+ℓ−
Γp̄p→ℓ+ℓ−
Γ
n̄n→2π0

Γ
p̄p→ 2π0

]

BR(p̄p → ℓ+ℓ−)

BR(p̄p → 2π0)
.

From isospin invariance of strong ints.

Γn̄n→2π0

Γp̄p→2π0

= 1 ,

Exp. measurements (most recently, from BABAR and VEPP/Novosibirsk) in the region
of

√
s slightly above threshold give

σ(e+e− → p̄p) ≃ 0.9 ± 0.1 nb.

σ(e+e− → n̄n) ≃ 0.85 ± 0.20 nb



for this interval in
√
s, using time reversal invariance of EM interactions,

Γn̄n→e+e−

Γp̄p→e+e−
≃ σe+e−→n̄n

σe+e−→p̄p

≃ 0.9

From exps. at LEAR (CERN), BR(p̄p → e+e−) = (3.58 ± 0.10) × 10−7.
Super-K event simulation:

BR(p̄p → 2π0)16O = BR(n̄n → 2π0)16O = 1.5 × 10−2

Combining these inputs,

Γn̄n→ℓ+ℓ−

Γn̄n→2π0

≃ (0.9)(3.58 × 10−7 yrs)

1.5 × 10−2
= 2 × 10−5

Super-K lower bound:

Γ−1
nn→2π0 > 4.04 × 1032 yrs

Combining these,

Γ−1
nn→ℓ+ℓ−

>∼ 2 × 1037 yrs for ℓ = e, µ


