Covering baryon number violation with inclusive searches

Julian Heeck

Amherst Center for Fundamental Interactions Workshop

Theoretical Innovations for Future Experiments Regarding Baryon Number Violation, Part 1

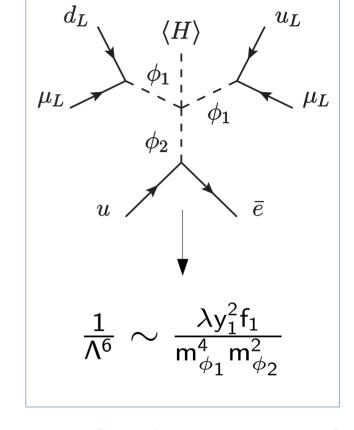
08/06/2020

Search under which lamppost?

- No signals in any ΔL & ΔB searches:
 - No $0\nu\beta\beta$, no p → e⁺π⁰, no n → \overline{n} , ...
 - How far can we push these limits?
- Best motivated and cleanest signatures, but no guarantee.
- **3** models with different *dominating* processes:

```
- p \rightarrow e^- \mu^+ \mu^+ \text{ or } \mu^- e^+ e^+. [Hambye, JH, PRL '18]
```

- $n \rightarrow K^+ \mu^+ e^- e^-$. [Pati, PRD '84; **JH**, Takhistov, PRD '20]
- $pp \rightarrow e^+e^+$ Or t^+e^+ ... [Arnellos & Marciano; Mohapatra & Senjanović, '82]
- Weaker limits, plenty of room for improvement!



$p \rightarrow \mu^+ \mu^+ e^-$

Minimal leptoquark example:

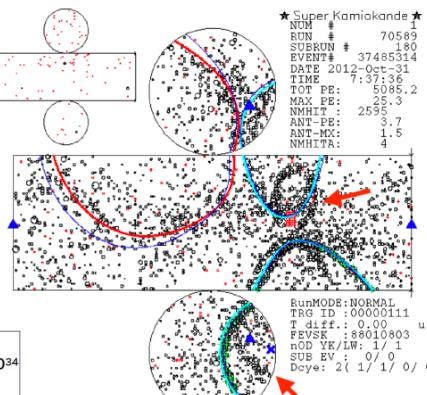
$$\phi_1 \sim (\mathbf{3}, \mathbf{3}, -2/3), \, \phi_2 \sim (\mathbf{3}, \mathbf{2}, 7/3).$$

- $U(1)_{L_{\mu}+2L_{e}-3L_{\tau}}$ gives structure $y_{j}\overline{L}_{\mu}\phi_{1}Q_{i}^{c}+f_{j}\overline{u}_{j}\phi_{2}L_{e}+\lambda\phi_{1}^{2}\phi_{2}H.$
- Final $\triangle B=1$ d=10 operator: $\frac{1}{\Lambda^6} QQuL_{\mu}L_{\mu}\bar{L}_eH.$
- Also conserves B-L & lepton flavor.

[Hambye, **JH**, PRL '18]

• ϕ_1 can resolve R(K) & R(K*) for $m_{\phi_1} \simeq 30 \, {
m TeV} \sqrt{y_2 y_3}$.

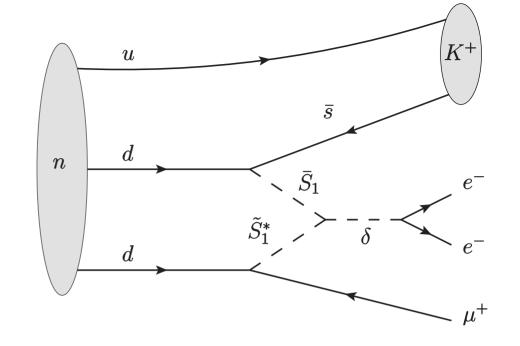
$$\Gamma({
m p} o \mu^+ \mu^+ {
m e}^-) \simeq rac{\langle {
m H}
angle^2 eta^2 {
m m}_{
m p}^5}{6144 \pi^3 \Lambda^{12}} \simeq rac{(100\,{
m TeV}/\Lambda)^{12}}{10^{33}\,{
m yr}}$$

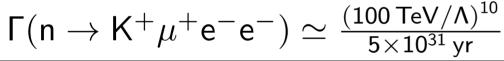

р→еµµ

Limits

- Presented by M. Miura at BLV 2019.

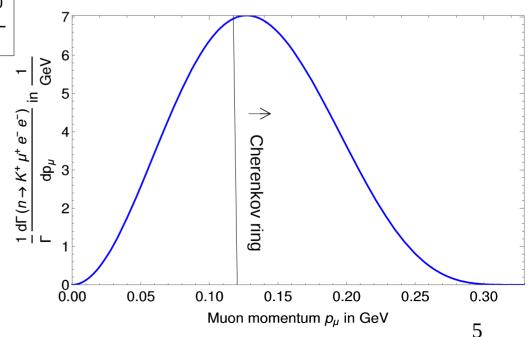
[full paper: 2001.08011, PRD '20]




Compatible with background, limits around 10³⁴ yr.

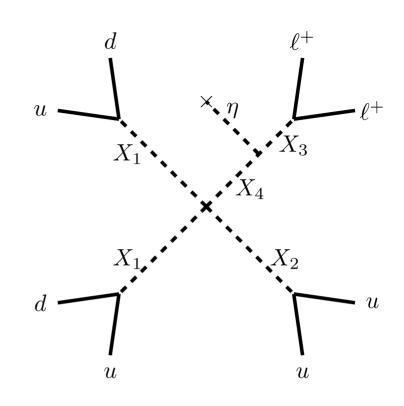
$n \rightarrow K^+\mu^+e^-e^-$

- Same model building as p → μ⁺μ⁺e⁻.
- Final $\triangle B=1$ d=9 operator:


$$\frac{1}{\Lambda^5}(\mathsf{ds})(\mathsf{d}\mu)(\bar{\mathsf{e}}\bar{\mathsf{e}}).$$

- No direct searches yet.
- No Cherenkov from K⁺ and half the muons.
- Clean tracks for DUNE?

[**JH**, Takhistov, PRD '20]



$$pp \rightarrow \ell^+\ell^+$$

- $\triangle B = \triangle L = 2$.
- d = 12 operators:

$$\tfrac{1}{\Lambda^8}(QQ)(QQ)(Q\ell)(Q\ell).$$

$$\Gamma(^{16}\mathrm{O}
ightarrow ^{14}\mathrm{C}\,\ell^+\ell^+) \simeq rac{(2\,\mathrm{TeV}/\Lambda)^{16}}{2 imes 10^{32}\,\mathrm{yr}}$$

6

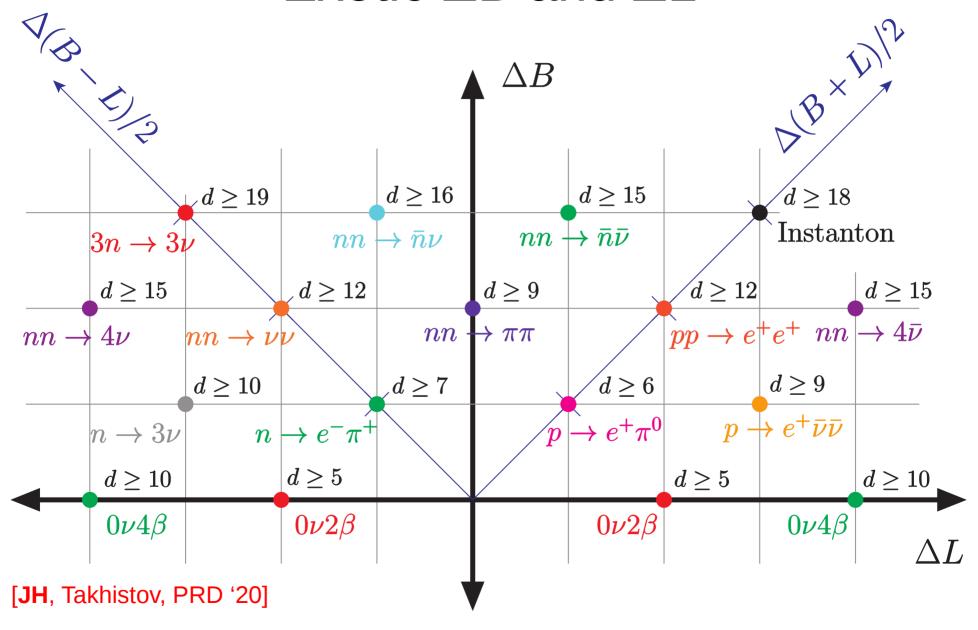
[Bramante, Kumar, Learned, PRD '15] Rate further suppressed! [Gardner, Yan, PLB '19]


- SK limits of 4x10³³ yr on ee, eμ, μμ, no limits on eτ. [SK, 1811.12430]
- pp $\rightarrow \tau^+\mu^+$ or $\tau^+\tau^+$ only at LHC or (indirectly) via

-
$$pn \rightarrow \mu^+ \overline{\nu}_{\tau}$$
 or $\tau^+ \overline{\nu}_{\tau}$. [SK, PRL '15]

nn → √√√. [KamLAND, PRL '06]
 Improve with JUNO?

ACFI, 8/6/20 Julian Heeck


Baryon and lepton number

ACFI, 8/6/20

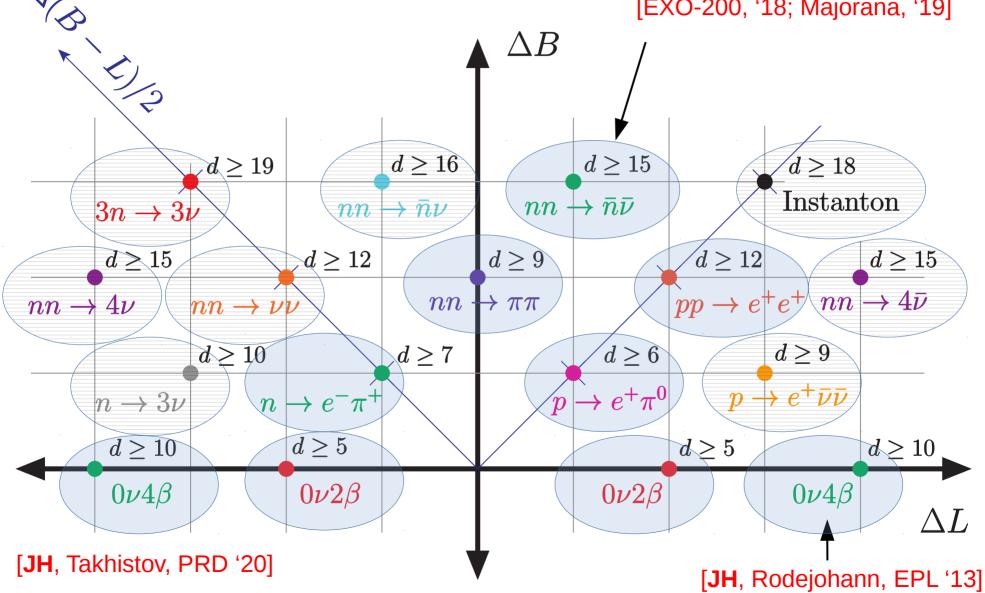
Julian Heeck

Exotic ΔB and ΔL

ACFI, 8/6/20

Julian Heeck

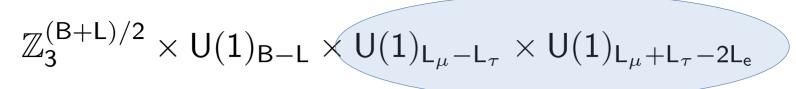
Recent limits:

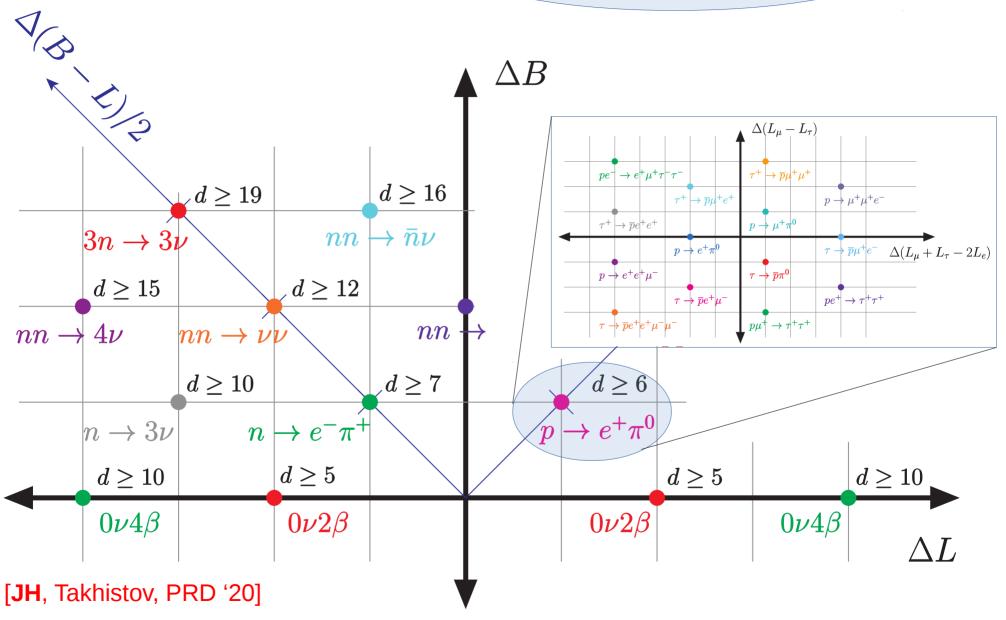


Older than 5 yr:

ppp \rightarrow e⁺ π ⁺ π ⁺

[Babu, Gogoladze, Wang, '03] [EXO-200, '18; Majorana, '19]




ACFI, 8/6/20

Julian Heeck

[NEMO-3, PRL '17]

9

ACFI, 8/6/20

Julian Heeck

10

Full ΔB coverage possible?

• Cannot to go through all $\triangle B > 0$ decays:

```
- 38 two-body \Delta B = 1 modes: N → AB. 36 limits.

- 76 three-body \Delta B = 1 modes: N → ABC. 33 limits.

- 300 four-body \Delta B = 1 modes: N → ABCD. 0 limits.

- 118 two-body \Delta B = 2 modes: NN → AB. 18 limits.

- 500 three-body \Delta B = 2 modes: NN → ABC. 0 limits.
```

Exclusive searches up to t ~ 10³⁴ yr in SK.

Inclusive searches to the rescue!

Inclusive searches

Current limits:

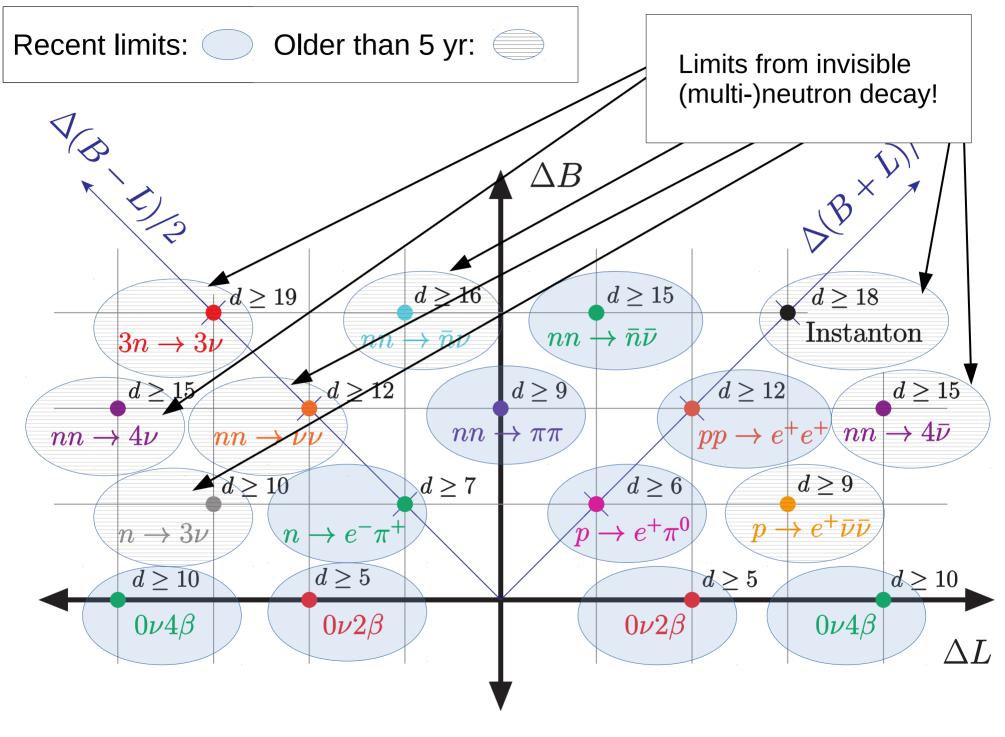
$$\Gamma^{-1}(N \to e + anything) > 0.6 \times 10^{30} \, \mathrm{yr}, \quad \text{[Learned, Reines, Soni, '79]}$$
 $\Gamma^{-1}(N \to \mu + anything) > 12 \times 10^{30} \, \mathrm{yr}. \quad \text{[Cherry, Deakyne, Lande, Lee, Steinberg, Cleveland, '81]}$

- 40 years old, improve with new tech!
- [JH, Takhistov, PRD '20]
- p \rightarrow e⁺ + anything in SK could reach 10³² yr, judging by

$$\Gamma^{-1}({
m p}
ightarrow {
m e}^+
u
u) > 1.7 imes 10^{32} \, {
m yr.} \, \, \, {
m [Super-K, PRL '14]}$$

- Do inclusive searches for N → l/meson + anything.
- Also probes $\Delta B > 1$, light new physics, and dark matter!

$$n \rightarrow \pi^0 \chi, p \rightarrow e^+ \chi, \dots$$
 DM $p \rightarrow DM' e^+, \dots$


Invisible neutron decay

Special case of inclusive searches:

$$\begin{array}{l} \Gamma^{-1}(\text{n}\rightarrow\text{neutrinos})>0.58\times10^{30}\,\text{yr},\\ \Gamma^{-1}(\text{nn}\rightarrow\text{neutrinos})>1.4\times10^{30}\,\text{yr},\\ \Gamma^{-1}(\text{nnn}\rightarrow\text{neutrinos})>1.8\times10^{23}\,\text{yr},\\ \Gamma^{-1}(\text{nnnn}\rightarrow\text{neutrinos})>1.4\times10^{23}\,\text{yr},\\ \Gamma^{-1}(\text{nnnn}\rightarrow\text{neutrinos})>1.4\times10^{23}\,\text{yr}. \end{array}$$
 [Hazama, Ejiri, Fushimi, Ohsumi, PRC '94]

- Only signature is de-excitation of daughter nucleus. [Ejiri, '93]
- Every $\Delta B = k$ operator gives rise to k neutrons \rightarrow neutrinos.
- Neutrinos carry away arbitrary lepton number & flavor!
- Also probes light new physics and dark matter.
- Can JUNO improve KamLAND limit? DUNE?

[**JH**, Takhistov, PRD '20]

Summary

- ΔB is more than just $p \rightarrow e^+\pi^0$ or $n \rightarrow n$.
- ΔB (& ΔL) probe
 - high scales (10¹⁵ GeV) or
 - high *multiplicities* (N → 15 particles) *or*
 - high operator dimensions (d~15)!

SK/HK,
DUNE,
JUNO,
0νββ exp.?

- Cover ground with inclusive searches!
 - N → ℓ/meson + anything, invisible neutron decay,...
- Still untapped areas:
 - Light new physics $(p \rightarrow \ell^+ + X, X \rightarrow SM?)$.
 - Dark matter induced ΔB & ΔL.

Plenty of lampposts to light the way!

Backup

Exotic ΔB and ΔL

- A) $\Delta B > 1$, $\Delta L > 1$, ... in EFT (heavy new physics). [Weinberg, '80]
 - E.g. $pp \rightarrow e^+e^+$ or $p \rightarrow e^+\nu\nu$.
- B) Flavored $\Delta B \& \Delta L$.
 - E.g. $p \rightarrow e^-\mu^+\mu^+$ or $t \rightarrow cb \ t^+$ ($\rightsquigarrow n \rightarrow \pi^0 \nu_{\tau}$). [Marciano '95; Hou, Nagashima, Soddu, '05]
- C) $\triangle B \& \triangle L$ with *light* new particles.
 - E.g. $n \rightarrow \pi^0 \chi$ or $p \rightarrow e^+ \chi$.
- D) Dark matter induced $\Delta B \& \Delta L$.
 - E.g. DM p \rightarrow n e⁺, DM p \rightarrow DM' e⁺, DM n \rightarrow DM' π^0 . [Kile, Soni, '09; Davoudiasl, Morrissey, Sigurdson, Tulin, PRL '10 & PRD '11; ...]

Homework: everything together.

Symmetries of the Standard Model

Rephasing lepton and quark fields:

$$\begin{split} & U(1)_{\text{B}} \times U(1)_{\text{L}_{\text{e}}} \times U(1)_{\text{L}_{\mu}} \times U(1)_{\text{L}_{\tau}} \\ &= U(1)_{\text{B}+\text{L}} \times U(1)_{\text{B}-\text{L}} \times U(1)_{\text{L}_{\mu}-\text{L}_{\tau}} \times U(1)_{\text{L}_{\mu}+\text{L}_{\tau}-2\text{L}_{\text{e}}} \,. \end{split}$$

• $U(1)_{B+1}$ broken non-perturbatively to \mathbb{Z}_3 ,

$$\Delta \mathsf{B} = \mathsf{3} \ \land \ \Delta \mathsf{L}_\mathsf{e} = \Delta \mathsf{L}_\mu = \Delta \mathsf{L}_ au = \mathsf{1} \, ,$$

but unobservable at low temperatures. ['t Hooft, PRL '76]

True accidental global symmetry:

$$\mathbb{Z}_{3}^{(B+L)/2} \times U(1)_{B-L} \times U(1)_{L_{\mu}-L_{\tau}} \times U(1)_{L_{\mu}+L_{\tau}-2L_{e}} \, .$$

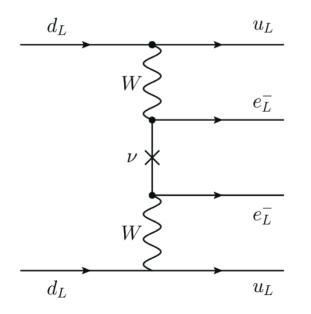
Standard Model effective field theory

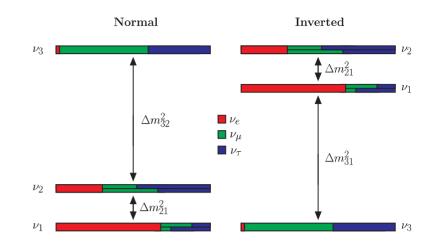
• EFT with Majorana neutrinos: [Weinberg, '79 & '80]

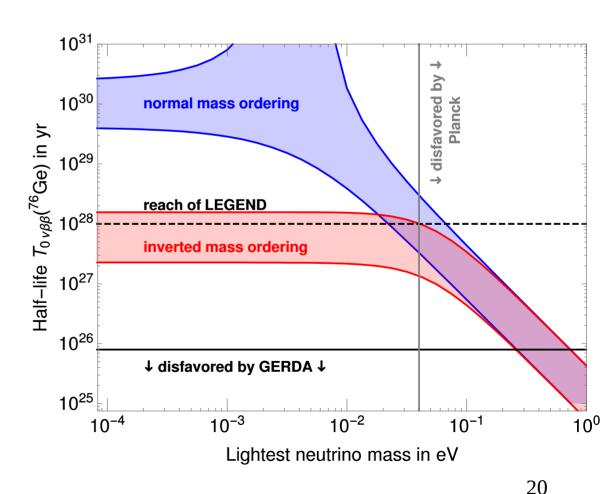
$$L = L_{\rm SM} + \frac{LLHH}{\Lambda} + \sum_{j} \frac{\mathcal{O}_{j}}{\Lambda^{2}} + \sum_{j} \frac{\mathcal{O}_{j}'}{\Lambda^{3}} + \sum_{j} \frac{\mathcal{O}_{j}''}{\Lambda^{4}} + \dots$$

$$\Delta L = 2 \qquad \Delta B = \Delta L = 1 \qquad \Delta B = -\Delta L = 1$$

- $d_{\min} \geq \frac{9}{2} |\Delta B| + \frac{3}{2} |\Delta L|$. [Kobach '16; Helset, Kobach, '19]
- ΔB dominated by d = 6, unless forbidden by symmetry!
 [Weinberg, '80]


Get global view on ΔB and ΔL .


$\Delta L = 2$


Neutrinoless double β decay:

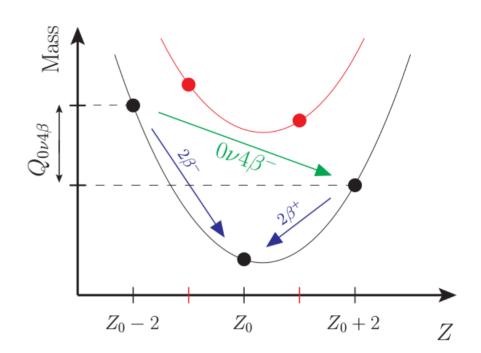
$$(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$$

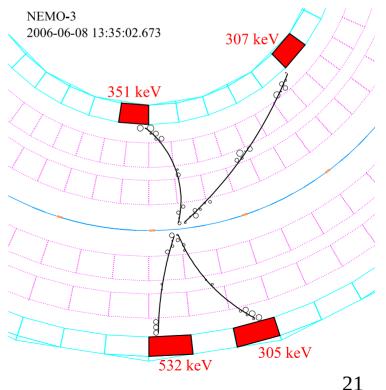
in β stable isotopes.

- Current limits ~ 10²⁶ yr.
- $0\nu2\beta \Leftrightarrow Majorana \nu$.

$\Delta L = 4$

• $\Delta L = 4$ in rare decays?


$$(A,Z) \rightarrow (A,Z+4) + 4 e^{-1}$$


- 3 candidates: ⁹⁶Zr, ¹³⁶Xe, ¹⁵⁰Nd. [JH, Rodejohann, EPL '13]
- First limit: $au_{0\nu4\beta}(^{150}{
 m Nd})>10^{21}{
 m yr}.$ [NEMO-3, PRL '17]
- Hard to find testable models.

[Fonseca, Hirsch, PRD '18; see however Dasgupta, Kang, Popov, PRD '19]

 Could still explain matterantimatter asymmetry.

[**JH**, PRD '13]

Two-body nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30}{ m yr}}$
$p \to e^+ + \gamma$	0	41000 72
$p \to e^+ + \pi^0$	0	16000 24
$p \to e^+ + \eta$	0	10000 [73]
$p \to e^+ + \rho^0$	0	720 <u>73</u>
$p \to e^+ + \omega$	0	1600 <u>73</u>
$p \to e^+ + K^0$	0	1000 74
$p \to e^+ + K^{*,0}$	0	84 <mark>65</mark>
$p \to \mu^+ + \gamma$	0	21000 72
$p \to \mu^+ + \pi^0$	0	7700 24
$p \to \mu^+ + \eta$	0	4700 <u>73</u>
$p o \mu^+ + \rho^0$	0	570 <mark>73</mark>
$p \to \mu^+ + \omega$	0	2800 <u>73</u>
$p \to \mu^+ + K^0$	0	1600 <u>75</u>
$p \to \nu + \pi^+$	0,2	390 <u>76</u>
$p \to \nu + \rho^+$	0,2	162 <u>65</u>
$p \to \nu + K^+$	0,2	5900 <mark>77</mark>
$p \rightarrow \nu + K^{*,+}$	$0,\!2$	130 78

$n \rightarrow e^- + \pi^+$	2	65 79 (5300* 73)
$n \to e^- + \rho^+$	2	62 <u>79</u> (217* <u>65</u>)
$n \rightarrow e^- + K^+$	2	32 62
$n \to e^- + K^{*,+}$	2	
$n \to e^+ + \pi^-$	0	5300 <u>73</u>
$n \to e^+ + \rho^-$	0	217 <mark>65</mark>
$n \to e^+ + K^-$	0	17 <mark>65</mark>
$n \to e^+ + K^{*,-}$	0	
$n \to \mu^- + \pi^+$	2	49 79 (3500* 73)
$n \to \mu^- + \rho^+$	2	7 79 (228* 65)
$n \to \mu^- + K^+$	2	57 <mark>62</mark>
$n \to \mu^+ + \pi^-$	0	3500 7 3
$n \to \mu^+ + \rho^-$	0	228 <mark>65</mark>
$n \to \mu^+ + K^-$	0	26 <mark>65</mark>
$n \to \nu + \gamma$	0,2	550 <u>28</u>
$n \to \nu + \pi^0$	0,2	1100 [76]
$n \to \nu + \eta$	0,2	158 <mark>65</mark>
$n \to \nu + \rho^0$	0,2	19 79
$n \to \nu + \omega$	0,2	108 <u>65</u>
$n \to \nu + K^0$	0,2	130 [74]
$n \to \nu + K^{*,0}$	0,2	78 <u>65</u>

[JH, Takhistov, PRD '20]

Three-body nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30}\mathrm{yr}}$
$p \rightarrow e^- + e^+ + e^+$	0	793 <mark>65</mark>
$p \to e^- + e^+ + \mu^+$	0	529 <mark>65</mark>
$p \rightarrow e^+ + e^+ + \mu^-$	0	529* 65
$p \to e^- + \mu^+ + \mu^+$	0	6 64 (359* 65)
$p \to e^{+} + \mu^{-} + \mu^{+}$	0	359 <mark>65</mark>
$p \to \mu^- + \mu^+ + \mu^+$	0	675 <mark>65</mark>]
$p \rightarrow e^+ + 2\nu$	0,2	170 81
$p \to \mu^+ + 2\nu$	0,2	220 81
$p \rightarrow e^- + 2\pi^+$	2	30 62 (82* 65)
$\frac{p \to e^- + \pi^+ + \rho^+}{p \to e^- + K^+ + \pi^+}$	2	
$p \rightarrow e^- + K^+ + \pi^+$	2	75 <mark>65</mark>
$p \rightarrow e^+ + 2\gamma$	0	100 82 (793* 65)
$p \to e^+ + \pi^- + \pi^+$	0	82 <mark>65</mark>
$p \rightarrow e^+ + \rho^- + \pi^+$	0	
$p \to e^+ + K^- + \pi^+$	0	75* <mark>65</mark>
$p \rightarrow e^+ + \pi^- + \rho^+$	0	
$p \to e^+ + \pi^- + K^+$	0	75* <mark>65</mark>
$p \to e^+ + 2\pi^0$	0	147 <mark>65</mark>
$p \rightarrow e^+ + \pi^0 + \eta$	0	
$p \to e^+ + \pi^0 + \rho^0$	0	
$p \rightarrow e^+ + \pi^0 + \omega$	0	
$p \to e^+ + \pi^0 + K^0$	0	
$p \rightarrow \mu^- + 2\pi^+$	2	17 62 (133* 65)
$p \to \mu^- + K^+ + \pi^+$	2	245 <mark>65</mark>
$p \rightarrow \mu^+ + 2\gamma$	0	529* <mark>[65</mark>]
$p \to \mu^+ + \pi^- + \pi^+$	0	133 <mark>65</mark>
$p \to \mu^{+} + K^{-} + \pi^{+}$	0	245* <mark>65</mark>
$p \to \mu^{+} + \pi^{-} + K^{+}$	0	245* <mark>65</mark>
$p \rightarrow \mu^+ + 2\pi^0$	0	101 65
$p \rightarrow \mu^+ + \pi^0 + \eta$	0	
$p \rightarrow \mu^+ + \pi^0 + K^0$	0	
$p \rightarrow \nu + \pi^+ + \pi^0$	0,2	
$p \rightarrow \nu + \pi^+ + \eta$	0,2	
$p \rightarrow \nu + \pi^+ + \rho^0$	0,2	
$p \rightarrow \nu + \pi^+ + \omega$	0,2	
$p \rightarrow \nu + \pi^+ + K^0$	0,2	
$p \rightarrow \nu + \rho^+ + \pi^0$	0,2	
$p \rightarrow \nu + K^+ + \pi^0$	0,2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$n \rightarrow \nu + e^- + e^+$	0,2	257 <mark>65</mark>
$n \rightarrow \nu + e^- + \mu^+$	0,2	83 <mark>65</mark>
$n \rightarrow \nu + e^+ + \mu^-$	0,2	83* <mark>65</mark>
$n \rightarrow \nu + \mu^- + \mu^+$	0,2	79 <mark>65</mark>
$n \to 3\nu$	0,2,4	0.58 83
$n \to e^- + \pi^+ + \pi^0$	2	29 62 (52* 65)
$n \rightarrow e^- + \pi^+ + \eta$	2	
$n \rightarrow e^- + \pi^+ + \rho^0$	2	
$n \rightarrow e^- + \pi^+ + \omega$	2	
$n \to e^- + \pi^+ + K^0$	2	
$n \rightarrow e^- + \rho^+ + \pi^0$	2	
$n \to e^- + K^+ + \pi^0$	2	
$n \rightarrow e^+ + \pi^- + \pi^0$	0	52 <mark>65</mark>
$n \rightarrow e^+ + \pi^- + \eta$	0	
$n \rightarrow e^+ + \pi^- + \rho^0$	0	
$n \rightarrow e^+ + \pi^- + \omega$	0	
$n \rightarrow e^+ + \pi^- + K^0$	0	18 82
$n \rightarrow e^+ + \rho^- + \pi^0$	0	
$n \to e^+ + K^- + \pi^0$	0	
$n \to \mu^- + \pi^+ + \pi^0$	2	34 62 (74* 65)
$n \to \mu^- + \pi^+ + \eta$	2	
$n \to \mu^{-} + \pi^{+} + K^{0}$	2	
$n \to \mu^- + K^+ + \pi^0$	2	
$n \to \mu^+ + \pi^- + \pi^0$	0	74 <u>65</u>
$n \rightarrow \mu^+ + \pi^- + \eta$	0	
$n \to \mu^+ + \pi^- + K^0$	0	
$n \to \mu^+ + K^- + \pi^0$	0	
$n \to \nu + 2\gamma$	0,2	219 65
$n \rightarrow \nu + \pi^- + \pi^+$	0,2	
$n \rightarrow \nu + \rho^- + \pi^+$	0,2	
$n \rightarrow \nu + K^- + \pi^+$	0,2	
$n \rightarrow \nu + \pi^- + \rho^+$	0,2	
$n \rightarrow \nu + \pi^- + K^+$	0,2	
$n \rightarrow \nu + 2\pi^0$	0,2	
$n \rightarrow \nu + \pi^0 + \eta$	0,2	
$n \rightarrow \nu + \pi^0 + \rho^0$	0,2	
$n \to \nu + \pi^0 + \omega$	0,2	
$n \rightarrow \nu + \pi^0 + K^0$	0,2	

[JH, Takhistov, PRD '20] Does not include SK's 2020 limits on p $\rightarrow \ell\ell\ell$.

Two-body di-nucleon decays

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$pp \rightarrow e^+ + e^+$	0	4200 72
$pp \rightarrow \mu^+ + \mu^+$	0	4400 72
$pp \rightarrow e^+ + \mu^+$	0	4400 72
$pp \rightarrow e^+ + \tau^+$	0	
$pp \rightarrow \pi^+ + \pi^+$	2	72 115
$pp \rightarrow \pi^+ + \rho^+$	2	
$pp o \pi^+ + K^+$	2	
$pp \rightarrow \pi^+ + K^{*,+}$	2	
$pp \rightarrow \rho^+ + \rho^+$	2	
$pp \rightarrow \rho^+ + K^+$	2	
$pp \rightarrow \rho^+ + K^{*,+}$	2	
$pp \rightarrow K^+ + K^+$	2	170 [116]
$pp \rightarrow K^+ + K^{*,+}$	2	
$pp \to K^{*,+} + K^{*,+}$	2	

$nn \rightarrow e^+ + e^-$	2	4200 72
$nn \rightarrow e^+ + \mu^-$	2	4400 72
$nn \rightarrow \mu^+ + e^-$	2	4400 72
$nn \rightarrow \mu^+ + \mu^-$	2	4400 72
$nn \rightarrow e^+ + \tau^-$	2	
$nn \rightarrow \tau^+ + e^-$	2	
$nn \rightarrow 2\nu$	0,2,4	1.4 83
$nn \rightarrow 2\gamma$	2	4100 72
$nn \rightarrow \gamma + \pi^0$	2	
$nn \rightarrow \gamma + \eta$	2	
$nn \rightarrow \gamma + \rho^0$	2	
$nn \rightarrow \gamma + \omega$	2	
$nn \rightarrow \gamma + \eta'$	2	
$nn \rightarrow \gamma + K^0$	2	
$nn \rightarrow \gamma + K^{*,0}$	2	
$nn \rightarrow \gamma + D^0$	2	
$nn \rightarrow \gamma + \phi$	2	
$nn \rightarrow \pi^- + \pi^+$	2	0.7 62 (72* 115)
$nn \to \pi^+ + \rho^-$	2	
$nn \rightarrow K^- + \pi^+$	2	
$nn \rightarrow K^{*,-} + \pi^+$	2	
$nn \to \pi^- + \rho^+$	2	
$nn \rightarrow K^+ + \pi^-$	2	
$nn \rightarrow K^{*,+} + \pi^-$	2	
$nn \rightarrow 2\pi^0$	2	404 115
$nn \rightarrow \eta + \pi^0$	2	
$nn o \pi^0 + \rho^0$	2	
$nn \to \pi^0 + \omega$	2	
$nn \rightarrow \eta' + \pi^0$	2	
$nn \rightarrow K^0 + \pi^0$	2	
$nn \to K^{*,0} + \pi^0$	2	

Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$nn \rightarrow \pi^0 + \phi$	2	
$nn \rightarrow 2\eta$	2	
$nn \to \eta + \rho^0$	2	
$nn \rightarrow \eta + \omega$	2	
$nn o \eta + \eta'$	2	
$nn \rightarrow \eta + K^0$	2	
$nn \to \eta + K^{*,0}$	2	
$nn \to \eta + \phi$	2	
$nn \rightarrow 2\rho^0$	2	
$\frac{nn \to \rho^0 + \omega}{nn \to \eta' + \rho^0}$	2	
$nn \rightarrow \eta' + \rho^0$	2	
$nn \rightarrow K^0 + \rho^0$	2	
$nn \rightarrow K^{*,0} + \rho^0$	2	
$nn \rightarrow \rho^0 + \phi$	2	
$nn \rightarrow \rho^- + \rho^+$	2	
$nn \rightarrow K^+ + \rho^-$	2	
$nn \rightarrow K^{*,+} + \rho^-$	2	
$nn \to K^- + \rho^+$	2	
$nn \rightarrow K^{*,-} + \rho^+$	2	
$nn o 2\omega$	2	
$nn \rightarrow \eta' + \omega$	2	
$nn \to K^0 + \omega$	2	
$nn \to K^{*,0} + \omega$	2	
$nn \to \omega + \phi$	2	
$nn \rightarrow \eta' + K^0$	2	
$nn o \eta' + K^{*,0}$	2	
$nn \rightarrow K^- + K^+$	2	170* 116
$\frac{nn \to K^- + K^+}{nn \to K^+ + K^{*,-}}$	2	
$nn \rightarrow K^- + K^{*,+}$	2	
$nn \rightarrow 2K^0$	2	
$nn \to K^{*,0} + K^0$	2	
$nn \to K^0 + \phi$	2	
$nn \rightarrow 2K^{*,0}$	2	
$nn \rightarrow K^{*,-} + K^{*,+}$	2	

		Γ^{-1}
Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$
$pn \rightarrow e^+ + \nu$	0,2	260 28
$pn \rightarrow \mu^+ + \nu$	0,2	200 28
$pn \rightarrow \tau^+ + \nu$	0,2	29 28
$pn \rightarrow \gamma + \pi^+$	2	
$pn \rightarrow \gamma + \rho^+$	2	
$pn \rightarrow \gamma + K^+$	2	
$pn \rightarrow \gamma + K^{*,+}$	2	
$pn \rightarrow \gamma + D^+$	2	
$nn \rightarrow \pi^{+} \perp \pi^{0}$	2	170 115
$pn \to \pi^+ \pi^+$ $pn \to \eta + \pi^+$	2	
$pn \rightarrow \pi^+ + \rho^0$	2	
$pn \rightarrow \pi^+ + \omega$	2	
$pn \rightarrow \eta' + \pi^+$	2	
$pn \rightarrow K^0 + \pi^+$	2	
$nn \rightarrow K^{*,0} + \pi^{+}$	2	
$pn \to n^+ + \phi$	2	
$pn \rightarrow \pi^0 + \rho^+$	2	
$pn \rightarrow K^+ + \pi^0$	2	
$pn \rightarrow K^{*,+} + \pi^0$	2	
$pn \rightarrow \eta + \rho^+$	2	
$pn \rightarrow \eta + K^+$	2	
$pn \to \eta + K^{*,+}$	2	
$pn \rightarrow \rho^+ + \rho^0$	2	
$pn \rightarrow K^+ + \rho^0$	2	
$pn \rightarrow K^{*,+} + \rho^0$	2	
$nn \rightarrow a^{+} + \omega$	2	
$pn \to \rho^+ \omega$ $pn \to \eta' + \rho^+$	2	
$pn \to K^0 + \rho^+$	2	
$pn \rightarrow K^{*,0} + \rho^+$	2	
$pn \rightarrow \rho^+ + \phi$	2	
$pn \rightarrow K^+ + \omega$	2	
$pn \rightarrow K^{*,+} + \omega$	2	
$pn \rightarrow \eta' + K^+$	2	
$pn \rightarrow \eta' + K^{*,+}$	2	
$pn \rightarrow K^{+} + K^{0}$	2	
$pn \rightarrow K^+ + K^{*,0}$	2	
$nn \rightarrow K^{+} + \phi$	2	
$pn \rightarrow K^{*,+} + K^0$	2	
$pn \to K^{*,+} + K^{*,0}$	2	

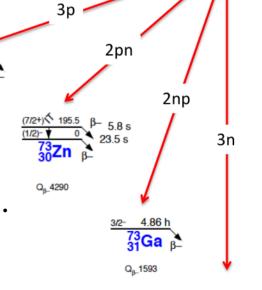
[JH, Takhistov, PRD '20]

ppp $\rightarrow e^+\pi^+\pi^+$

Symmetry

$$\mathbb{Z}_6 \subset \mathsf{U}(1)_{\mathsf{2Y-B+3L}}$$

[Babu, Gogoladze, Wang, '03]


allows for d = 15 $\Delta B = 3\Delta L = 3$ operators $\frac{1}{\Lambda^{11}}Q^5d^4\overline{\ell}, \dots$

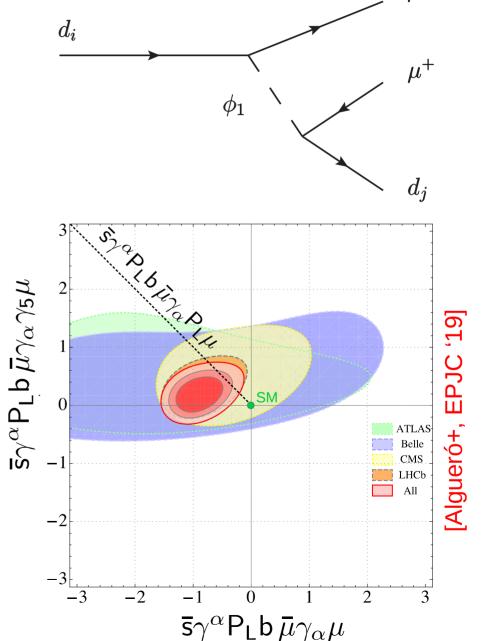
- ppp \rightarrow e⁺ π ⁺ π ⁺, ppn \rightarrow e⁺ π ⁺, pnn \rightarrow e⁺ π ⁰, nn \rightarrow $\bar{n}\bar{\nu}, ...$
- $au(\text{pnn} o \text{e}^+\pi^0) \simeq 3 imes 10^{33}\,\text{yr}\,\left(\frac{\Lambda}{100\,\text{GeV}}\right)^{22}$.
- Limits:

$$au(^{73}{
m Ge(pnn)}
ightarrow ^{70}{
m Ga\,e^+\pi^0}) > 7 imes 10^{23}\,{
m yr},$$
 $au(^{76}{
m Ge(ppn)}
ightarrow ^{73}{
m Zn\,e^+\pi^+}) > 5 imes 10^{25}\,{
m yr},$ $au(^{76}{
m Ge(ppp)}
ightarrow ^{73}{
m Cu\,e^+\pi^+\pi^+}) > 5 imes 10^{25}\,{
m yr}, \ldots$

[Majorana Demonstrator, PRD '19; see also EXO-200, '18]

SK, JUNO, DUNE, HK?

Lepton universality in $b \rightarrow s\mu^-\mu^+$


- $\quad \quad \quad \quad \frac{y_j \overline{y}_i}{m_{\phi_1}^2} (\overline{L}_{\mu} Q_j^c) (Q_i L_{\mu}) \, .$
- Modifies b → s µ ¬ µ †:

$$R(K^{(*)}) = \frac{B \to K^{(*)} \mu^{+} \mu^{-}}{B \to K^{(*)} e^{+} e^{-}}$$
.

- LHCb: R(K)~0.85,
 R(K*)~0.67.
- Improve fit with

$$m_{\phi_1} \simeq 30 \, {
m TeV} \sqrt{y_2 y_3}$$
 .

[Alok+, PRD '17; Dorsner+, JHEP '17; Capdevila+, JHEP '18, Algueró+, EPJC '19]

