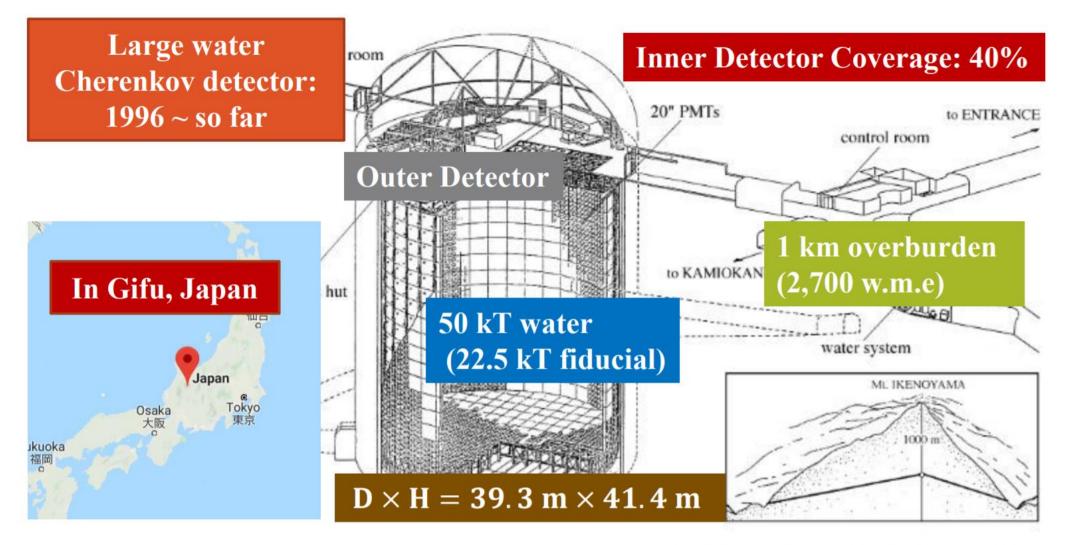
Neutron-Antineutron Oscillation Search at Super-Kamiokande & Prospect for SK-Gd and HK



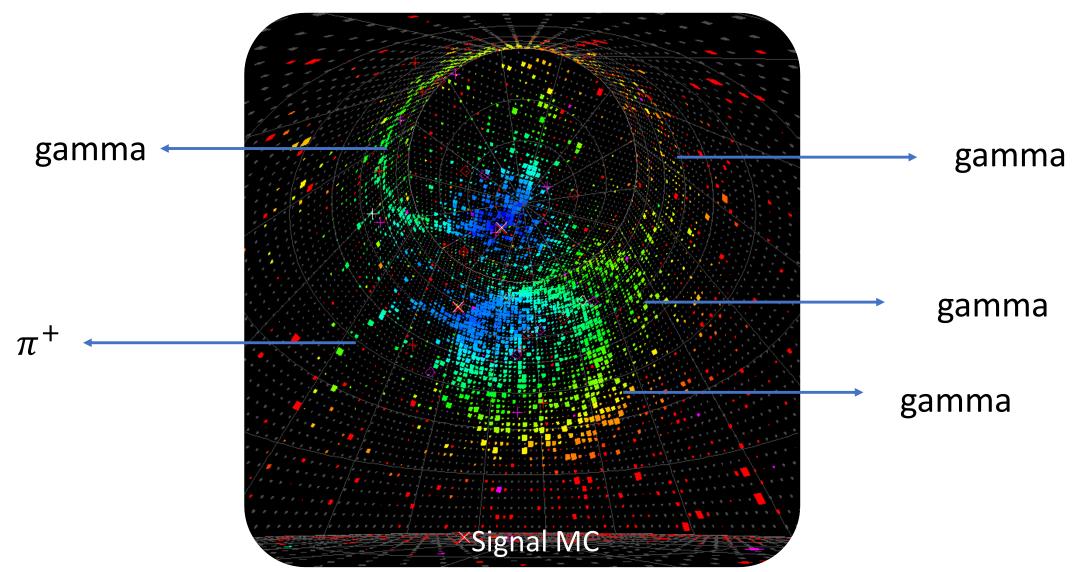
WAN, Linyan on behalf of Super-Kamiokande collaboration wanly@bu.edu BOSTON university

Motivation

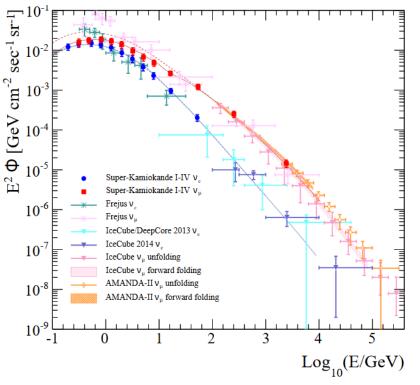
- **Neutron-antineutron oscillation** is an important candidate for baryon number violating process,
 - $\Delta B = 2, \Delta L = 0$
 - a unique probe into physics beyond the Standard Model.
- This analysis searches for $n \rightarrow \overline{n}$ oscillation by **bound neutrons in oxygen nucleus**.
 - upper limit on neutron life-time in media $T_{n\bar{n}}$
 - can be translation into transition time $\tau_{n \to \overline{n}}$ by $\tau_{n \to \overline{n}} = \sqrt{T_{n\overline{n}}/R}$, where *R* is the suppression factor

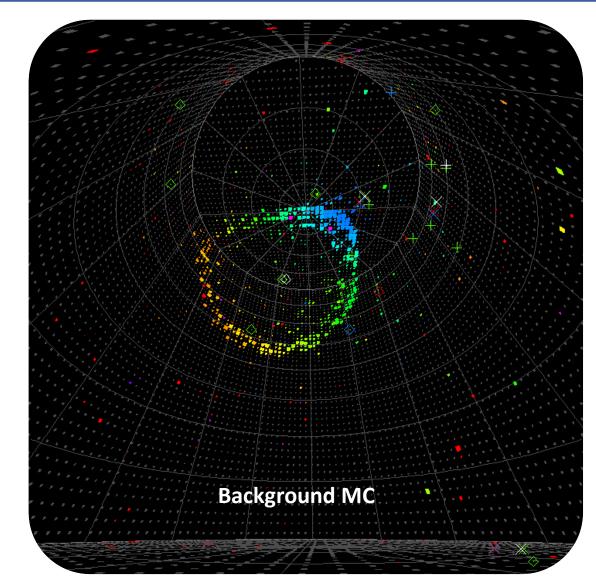
Super-Kamiokande Detector

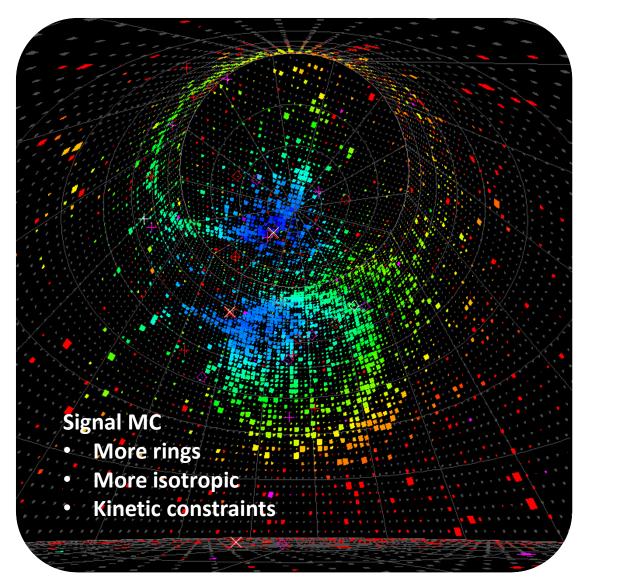
Nucl. Instr. & Meth, A 737C (2014)

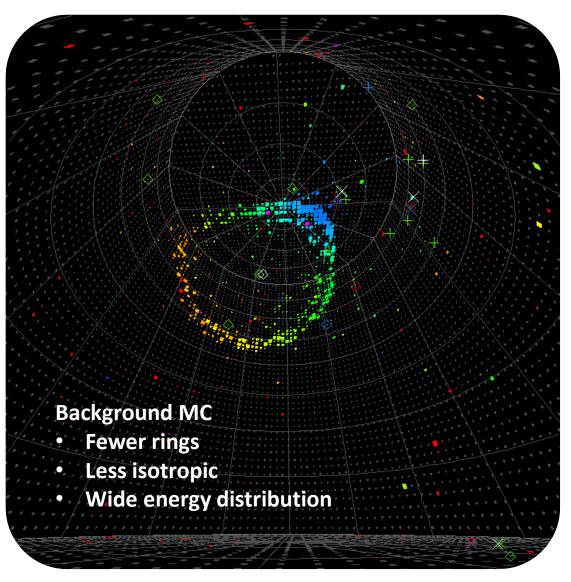

Signal Mechanism

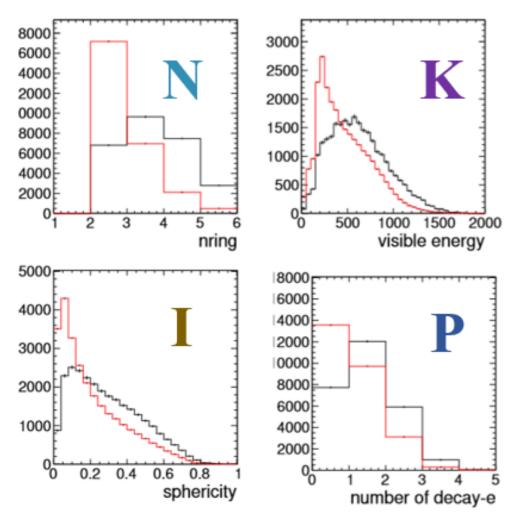
- 1. A bound neutron oscillates to an antineutron.
- 2. The antineutron then annihilates with a neutron or proton, producing multiple pions.
- 3. These pions or secondary particles produce Cherenkov light detected by the PMTs.


4

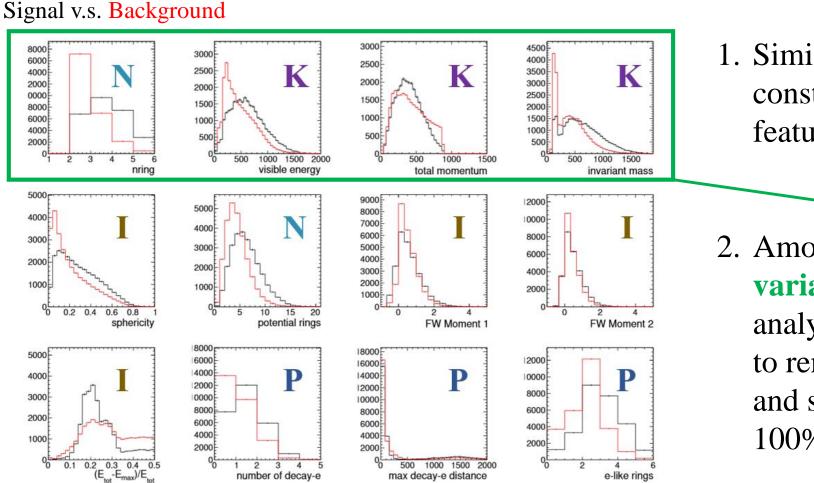

Simulated Signal Event


Background


The main background for this analysis at SK is atmospheric neutrinos. Pion production processes and deep inelastic scattering produce a similar signature to signal.


Signal / Background Comparison

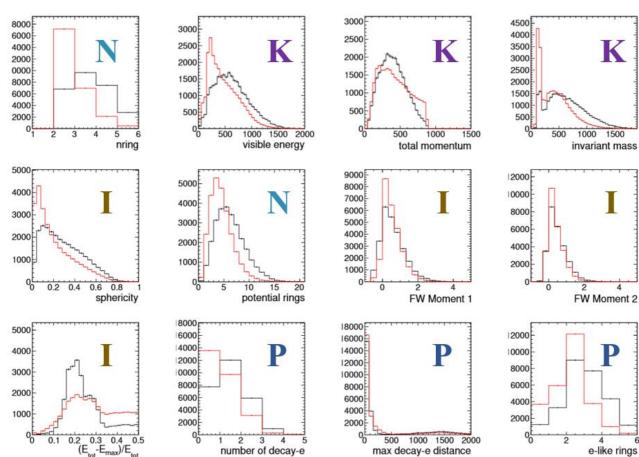
Signal / Background Features


Signal v.s. Background

These features can be quantified by variables in four categories: **number of rings, kinematics, isotropy**, or **PID**.

Signals tend to have **more rings**, **higher visible energy** (constrained by momentum), are **more isotropic**, and have **more decay-electrons** than backgrounds.

Analysis Flow

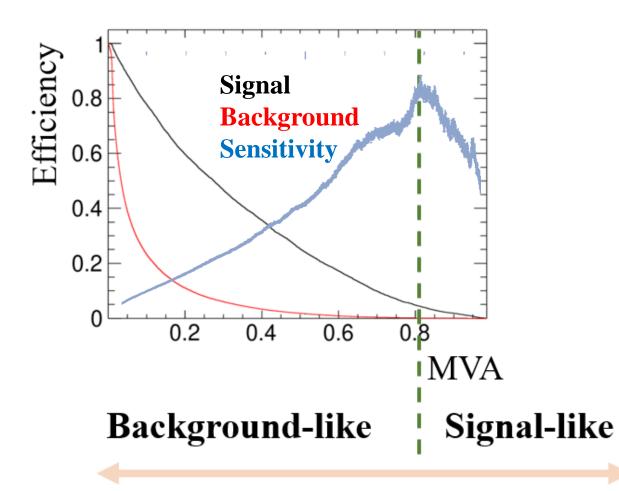


1. Similarly, more variables can be constructed. We quantify these features by 12 variables.

Among them, 4 conventional variables (used in SK-I analysis) are selected as pre-cuts to remove non-physics events and some backgrounds at almost 100% signal efficiency.

kinematics, isotropy, number of rings, or PID.

Analysis Flow



Signal v.s. Background

- 3. After pre-cuts, we optimized a multi-variate analysis with these 12 variables, using a multi-layer perceptron.
- 4. We then evaluate signal
 efficiency and background rate
 at every possible cut, and
 calculate the corresponding
 sensitivity.
- 5. The analysis cut is then set at the best sensitivity.

Sensitivity

The cut is optimized towards best sensitivity for 0.37 megaton × years statistics (SK I-IV) with an estimation of systematics.

Signal efficiency: 4.1% Background rate: 0.56 / year

Sensitivity : 4.3×10^{32} years (Rolke method)

Systematic Uncertainty

Physics	Sys. on sig. MVA Sys. on bkg.	MVA
Hadronization	4%	\
FSI	31%	\setminus
Fermi motion	7%	\setminus
Neutrino flux/interaction	\backslash	24%
Detector		
E-scale	5%	11%
Non-uniformity	4%	6%
Ring counting	2%	2%
Other MVA vars	4%	7%
Total	33%	28%

Systematic uncertainty for signal efficiency is dominated by **final state interaction**, especially pion absorption within nucleus.

For background rate, it is dominated by **deep inelastic interaction** modeling and cross-section, as well as flux uncertainty.

	Efficiency	Event rate	Systematics
Signal	4.1%		33%
Background		0.56 / year	28%

Comparison with Conventional Analysis

	SK-I Paper	Box-cut method	This analysis	
Data set	SK I (1489 days)	SK I-IV (6	050.3 days)	
Hadron production	Bubble chamber	Crystal Barrel + Obelix + Bubble chambe		
Final state interaction	ORNL[1]	NEUT π FS	SI model [2]	
Analysis method	Box cut with s	same variables	Multi-layer perceptron	
Optimization	Conventional	Towards bes	st sensitivity	
Signal eff.	12.1%	3.7%	4.1%	
Background rate	5.91 / year	0.90 / year	0.56 / year	
Sensitivity	1.9×10^{32} years	2.0×10^{32} years	4.3 \times 10 ³² years	
[1] OPNI 6010	[2] ar Xiv: 1/05 3073	·		

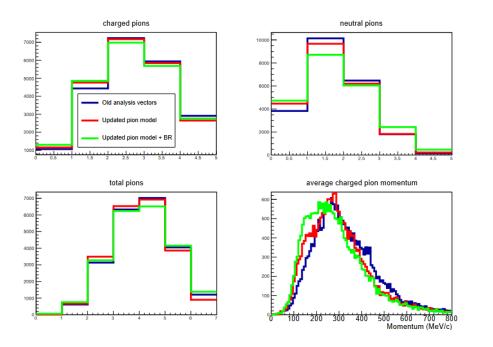
[1] ORNL-6910

[2] arXiv: 1405.3973

Branching Ratio

Ī	$ar{\imath}n$ annihilatic	n	$ar{n}$ p	annihilation	l
	Branching Ratio Re	elative Uncer.	Bı	canching Ratio Relat	tive Uncer.
$2\pi_0$	0.00065	5%	$\pi^+\pi_0$	0.001	32%
$3\pi_0$	0.0070	6%	$\pi^+ 2\pi_0$	0.0068	32%
$4\pi_0$	0.0031	6%	$\pi^+ 3\pi_0$	0.143	32%
$5\pi_0$	0.0092	4%	$\pi^+ 4\pi_0$	0.0132	32%
$6\pi_0$	0.00012	8%	$2\pi^+\pi^-$	0.019	10%
$7\pi_0$	0.0013	8%	$2\pi^+\pi^-\pi_0$	0.164	10%
$\pi^+\pi^-$	0.0031	4%	$2\pi^+\pi^-2\pi_0$	0.104	10%
$\pi^+\pi^-\pi_0$	0.0154	15%	$2\pi^+\pi^-3\pi_0$	0.291	10%
$\pi^+\pi^-2\pi_0$	0.122	15%	$3\pi^+2\pi^-$	0.053	10%
$\pi^+\pi^-3\pi_0$	0.1045	15%	$3\pi^+2\pi^-\pi_0$	0.031	10%
$\pi^+\pi^-4\pi_0$	0.031	14%			
$\pi^+\pi^-5\pi_0$	0.013	15%	Thic	analycic	
$2\pi^+2\pi^-$	0.056	16%	11112	analysis	
$2\pi^+2\pi^-\pi_0$	0.1258	15%			
$2\pi^{+}2\pi^{-}2\pi$	0.1458	15%			
$2\pi^{+}2\pi^{-}3\pi_{0}$	0.006	33%			
$3\pi^+3\pi^-$	0.021	15%			
$3\pi^+3\pi^-\pi_0$	0.0185	15%		Г	1] Phys

$\bar{n}p$		$\bar{n}n$	
$\pi^+\pi^0$	1%	$\pi^+\pi^-$	2%
$\pi^+ 2\pi^0$	8%	$2\pi^0$	1.5%
$\pi^+ 3 \pi^0$	10%	$\pi^+\pi^-\pi^0$	6.5%
$2\pi^+\pi^-\pi^0$	22%	$\pi^+\pi^-2\pi^0$	11%
$2\pi^+\pi^-2\pi^0$	36%	$\pi^+\pi^-3\pi^0$	28%
$2\pi^+\pi^-\omega$	16%	$2\pi^{+}2\pi^{-}$	7%
$3\pi^+2\pi^-\pi^0$	7%	$2\pi^{+}2\pi^{-}\pi^{0}$	24%
		$\pi^+\pi^-\omega$	10%
		$2\pi^+ 2\pi^- 2\pi^0$	10%

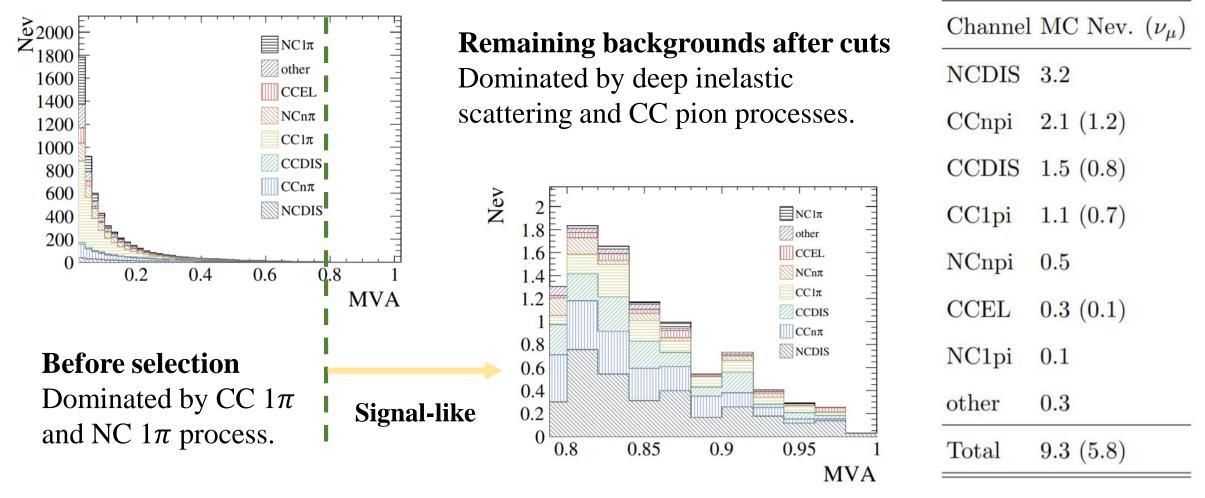

SK-I

Main difference:

• This analysis includes more recent measurement from Crystal Barrel[1] and Obelix[2]

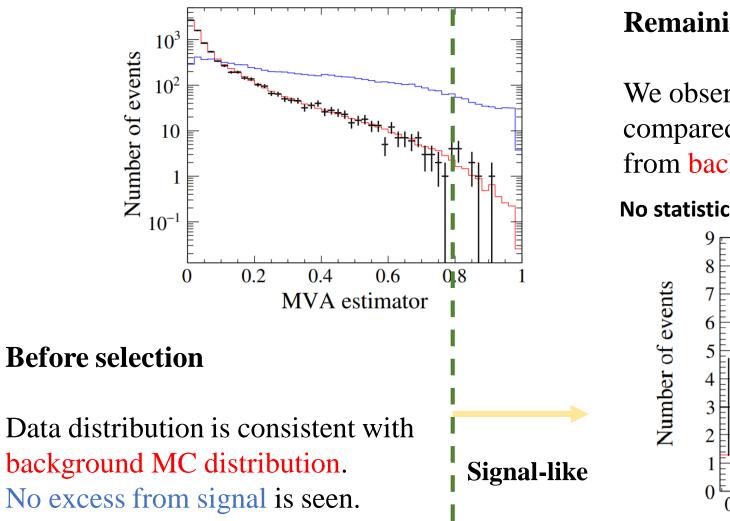
[1] Phys. Rept. 413, 197 (2005) [2] Phys. Rept. 383, 213 (2003)

Final State Interaction


	Abs.	QE	QX	π prod.	No int.
Ref. [23] (SK-I)	24%	$24\%^{*}$		3%	49%
This analysis	21%	20%	23%	3%	30%

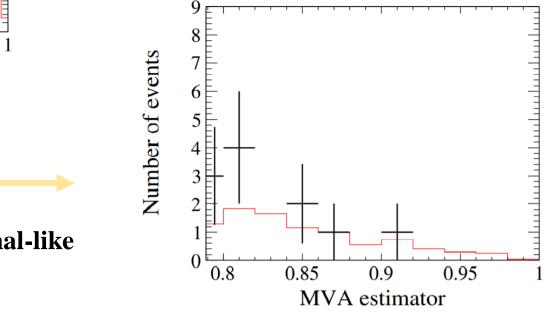
Systematic estimation for FSI: SK-I analysis: 20% This analysis: 31%

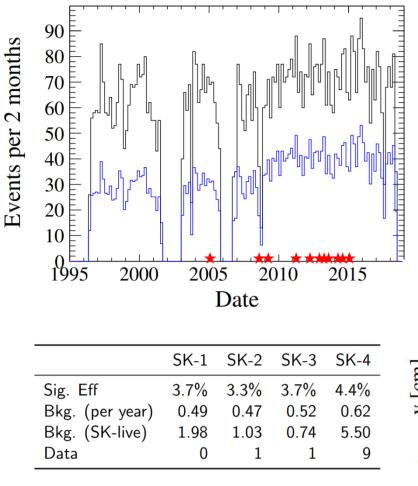
Main difference:


- 1. Pions in the new model is more interactive
- 2. SK-I analysis has underestimated the systematic uncertainty from FSI

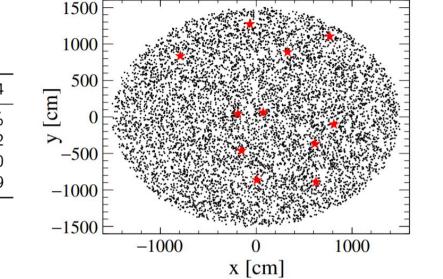
Remaining backgrounds

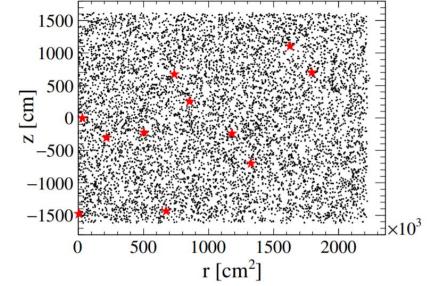
= 25.1 / Megaton / year


Open Data


Remaining events after cut

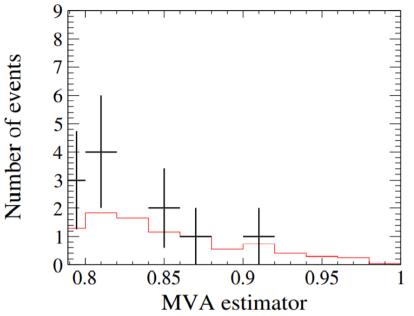
We observed 11 events in data, compared with 9.3 events expected from background MC.


No statistically significant excess of events.



Uniformity Check

- Time distribution of the observed event (red stars) are consistent with background distribution (blue histogram scaled by 500).
- Spatial observation is consistent with uniform distribution for observed events (red stars) and events after precut (black points).



KS test prob=0.14

Result

	Nev	$T_{n\bar{n}}$ (10 ³² yrs)	$\tau_{n \to \bar{n}} (10^8 \text{ s})$
MC	9.3	4.3	5.1
Data	11	3.6	4.7

No statistically significant excess of events has been observed.

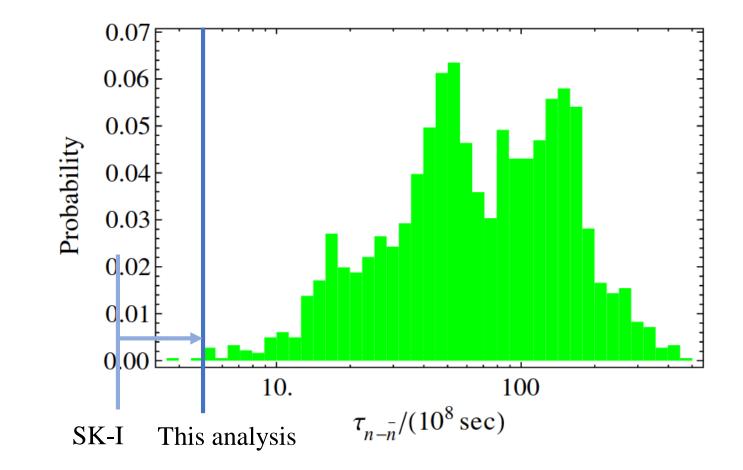
The observation limit is set at 3.6×10^{32} years at 90% C.L.

Taking $R=0.517 \times 10^{23}$ / s, this corresponds to $7_{n\to\overline{n}} > 4.7 \times 10^8$ s

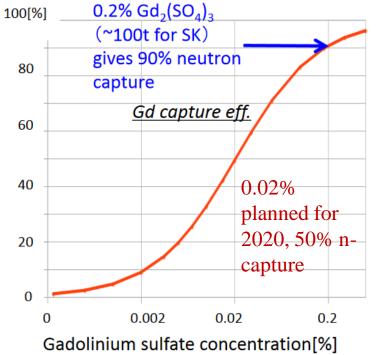
R from Phys. Rev. D78, 016002 (2008)

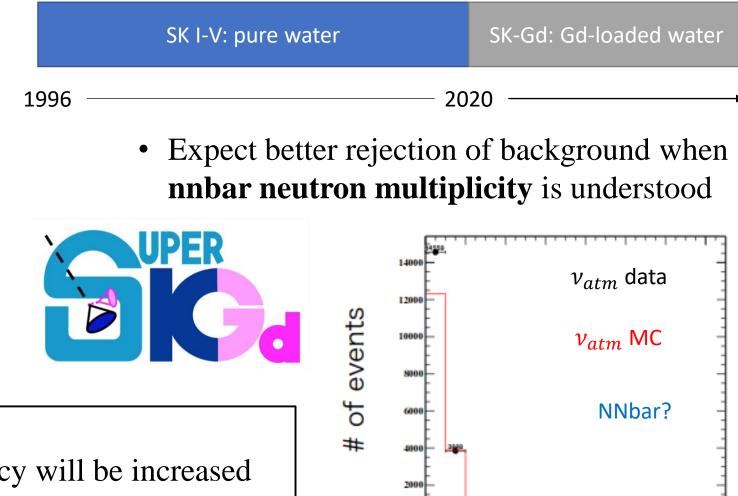
Comparison with Other Experiments

For better comparison and easier conversion, in this table $\tau_{n \to \bar{n}}$ is presented as $\sqrt{T_{n\bar{n}}/R}$ using the most recent *R*, regardless of the reported $\tau_{n \to \bar{n}}$ in corresponding paper.


		$T_{n\bar{n}}(10^{32} \text{ yea})$	ars) $R (10^{23}/{\rm s})$) $\tau_{n \to \bar{n}} (10^8 \text{ s})$
¹⁶ O	SK-I-IV (this study)	3.6	0.517	4.7
¹⁶ O	SK-I [8] (2015)	1.9	0.517	3.4
^{16}O	Kamiokande $[11]$ (1986)	0.4	0.517	1.6
$^{2}\mathrm{H}$	SNO [9] (2017)	0.1	0.25	1.4
$^{56}\mathrm{Fe}$	Soudan II $[10]$ (2002)	0.7	1.4	1.3
$^{56}\mathrm{Fe}$	Frejus [38] (1990)	0.7	1.4	1.2
$^{16}\mathrm{O}$	IMB $[12]$ (1984)	0.2	0.517	1.2
Free neutron	Grenoble $[7]$ (1994)	-	-	0.9

Comparison with Theoretical Prediction

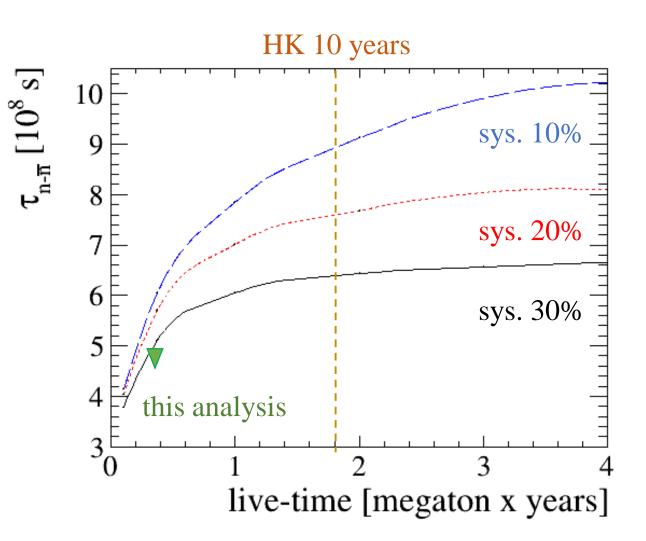

Reaching the range of theoretical prediction


Green from PSB model PRD 87 115019 (2013)

Blue from this analysis

NNbar Future at SK-Gd: neutron multiplicity!

- Gd loading in operation
- Neutron tagging efficiency will be increased from 25% to 90%.


Neutron Multiplicity

NNbar Future at HK: tackle systematics!

Assuming the same signal efficiency and background rate, we show the sensitivity curves with present **sys. uncer.** (~30%), 20%, and 10% for both signal and bkg.

This analysis: SK I-IV, 0.37 Mton × yrs HyperK: 0.18 Mton × 10 yrs, (1 module)

Soon this search will be **systematically constrained**. Calling for further study on final state interaction and neutrino bkg...

*This is NOT from HyperK collaboration.

Conclusion

- SK obtained the strongest constraints for $n \bar{n}$ oscillation so far at neutron lifetime 3.6 \times 10³² years, corresponding to neutron oscillation time at 4.7 \times 10⁸ s.
 - Large exposure (SK I-IV, 0.37 megaton × years)
 - Multi-variate analysis
 - Updated final state interaction and hadron production simulation \bullet
- In future, water Cherenkov experiment is expected to push forward the \bullet limit for bound neutron oscillation search
 - SK-Gd: better background rejection \bullet
 - HK: larger FV of 0.18 megaton \bullet

Neutron-Antineutron Oscillation Search at Super-Kamiokande

WAN, Linyan on behalf of Super-Kamiokande collaboration

BOSTON university

Thank you for your attention!

Presented by

