Neutron-antineutron oscillation improvements and baryogenesis

James Wells
University of Michigan
August 5, 2020 (ACFI Workshop)
Based on JW'18 and Grojean, Shakya, JW, Zhang, PRL'18

Work supported in part by DOE and Humboldt Foundation and DFG.

Outline

Introduction

NNbar oscillations for free neutrons
EFT for Nnbar oscillations

Minimal EFT for $\Delta B=2$ baryogenesis
Calculations of baryon asymmetry and n-nbar oscillations

Conclusion
B and L are accidental symmetries of $S M$ - subject to violation
Proton decay can occur by higher-dim operator. $\quad \frac{1}{\Lambda_{p}^{2}}\left(\bar{d}^{c} \bar{u}^{c} q \ell\right)+\cdots$
This operator likely exists with Planck suppressed couplings at least.

$$
\Delta \mathrm{B}=\Delta \mathrm{L}=1
$$

This operator could exist with smaller scale suppression in GUT theories, etc..

(SUSY GUTs)
B, L violation connected to baryon asymmetry puzzle
B-L violation required to avoid sphaleron washout above EW scale - proton decay conserves B-L

M.G. Strauss

Let's look to more direct connections to B violation.

$\Delta B=2$ baryon number violating interaction in EFT

Other $|\Delta B|=2, \Delta L=0$ processes include dinucleon decays: $n n \rightarrow \pi^{0} \pi^{0}, p p \rightarrow \pi^{+} \pi^{+}, p n \rightarrow \pi^{+} \pi^{0}$ probe the same operators as $n-\bar{n}$ oscillation, while $p p \rightarrow K^{+} K^{+}$can be relevant for B-violating new physics with suppressed couplings to firstgeneration quarks.

Past and future experimental sensitivities to oscillation lifetime

- Current free neutron bound $\tau \sim 10^{8} \mathrm{~s}$ from ILL, and somewhat better at Super-K
- Future prospects at ESS (free neutrons), DUNE and Hyper-K up to $\tau \sim 10^{9-10} \mathrm{~S}$
- Such oscillation times probe new physics scales up to $\left.\Lambda_{\text {new }} \sim\left(\tau \Lambda_{\mathrm{QCD}}\right)^{6}\right)^{1 / 5} \sim 10^{5-6} \mathrm{GeV}$.
- Probes beyond LHC scales (albeit in only just this way)

Quantum mechanics of neutron-antineutron oscillations

Evolution governed by Schrödinger equation:

$$
\mathcal{H}_{\mathrm{eff}}|\psi\rangle=i \frac{\partial}{\partial t}|\psi\rangle
$$

Where Hamiltonian given by

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}|n\rangle & =\left(m_{n}-i \frac{\Gamma}{2}+\mathcal{E}_{n}\right)|n\rangle+\delta|\bar{n}\rangle \\
\mathcal{H}_{\mathrm{eff}}|\bar{n}\rangle & =\left(m_{n}-i \frac{\Gamma}{2}+\mathcal{E}_{\bar{n}}\right)|\bar{n}\rangle+\delta|n\rangle
\end{aligned}
$$

The matrix $\left\langle\mathcal{H}_{\text {eff }}\right\rangle$ in the $\{n, \bar{n}\}$ basis is

$$
\left\langle\mathcal{H}_{\mathrm{eff}}\right\rangle=\left(\begin{array}{cc}
m_{n}-i \frac{\Gamma}{2}+\mathcal{E}_{n} & \delta \\
\delta & m_{n}-i \frac{\Gamma}{2}+\mathcal{E}_{\bar{n}}
\end{array}\right)
$$

where m_{n} is mass of the neutron, Γ is the decay width (i.e., neutron lifetime is $\tau_{n}=1 / \Gamma$), δ is contribution from $\mathcal{H}_{\text {eff }}$ that enables $n \leftrightarrow \bar{n}$ transitions, and \mathcal{E}_{n} and $\mathcal{E}_{\bar{n}}$ are any other additional contributions to the energy of the n and \bar{n} states respectively. If the neutrons were propagating completely freely in space with no other matter around and no magnetic field, etc., $\mathcal{E}_{n, \bar{n}}=0$. But since that is never the case in experimental configurations, we must keep this term.

If the neutron and antineutron mix then energy eigenstates (or, "mass eigenstates") $\mathcal{H}_{\text {eff }}$ are mixtures of n and \bar{n} which we denote as n_{1} and n_{2} :

$$
\binom{\left|n_{1}\right\rangle}{\left|n_{2}\right\rangle}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{|n\rangle}{|\bar{n}\rangle}
$$

Assuming $\mid n_{i}>$ are eigenstates of Heff

$$
\mathcal{H}_{\mathrm{eff}}\left|n_{i}\right\rangle=E_{i}\left|n_{i}\right\rangle
$$

one then expands evolves the wave function

$$
|\psi\rangle(t)=c_{1}\left|n_{1}\right\rangle e^{-i E_{1} t}+c_{2}\left|n_{2}\right\rangle e^{-i E_{2} t}
$$

Subjecting it to boundary condition $|\psi\rangle(0)=\mid n>$ we find

$$
|\psi\rangle(t)=\left(\cos ^{2} \theta e^{-i E_{1} t}+\sin ^{2} \theta e^{-i E_{2} t}\right)|n\rangle+\cos \theta \sin \theta\left(e^{-i E_{1} t}-e^{-i E_{2} t}\right)|\bar{n}\rangle
$$

$$
|\psi\rangle(t)=\left(\cos ^{2} \theta e^{-i E_{1} t}+\sin ^{2} \theta e^{-i E_{2} t}\right)|n\rangle+\cos \theta \sin \theta\left(e^{-i E_{1} t}-e^{-i E_{2} t}\right)|\bar{n}\rangle
$$

We compute the probability that $|\psi\rangle(t)$ is measured to be a \bar{n} by the standard probability computation in quantum mechanics,

$$
\begin{gathered}
P[\bar{n}(t)]=|\langle\bar{n} \mid \psi\rangle(t)|^{2}=e^{-\Gamma t} \sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta E t}{2}\right), \quad \text { where }, \\
\Gamma=\operatorname{Im}\left(E_{1}+E_{2}\right), \quad \text { and } \quad \Delta E=E_{1}-E_{2} .
\end{gathered}
$$

The first term, $e^{-\Gamma t}$, is associated with the lifetime of the neutron.

```
"Photographs" of propagating neutron in time:
```


Approximations valid for reactor environment

For $m_{n} \gg\left|\mathcal{E}_{n}-\mathcal{E}_{\bar{n}}\right| \gg \delta$, which will be justified later in the nuclear reactor experimental context, one can make the approximations

$$
\begin{aligned}
& E_{1} \simeq m_{n}+\mathcal{E}_{n}-i \frac{\Gamma}{2}, \quad E_{2} \simeq m_{n}+\mathcal{E}_{\bar{n}}-i \frac{\Gamma}{2}, \quad \text { where } \quad \mathcal{E}_{n}=-\mathcal{E}_{\bar{n}}=-\mu_{n} \cdot B \\
& \Delta E=E_{1}-E_{2}=\mathcal{E}_{n}-\mathcal{E}_{\bar{n}}, \quad \text { and } \quad \sin 2 \theta=\frac{2 \delta}{\mathcal{E}_{n}-\mathcal{E}_{\vec{n}}} .
\end{aligned}
$$

Under these assumptions we can now rewrite the transition probability as

$$
P[\bar{n}(t)]=e^{-\Gamma t}\left(\frac{2 \delta}{\mathcal{E}_{n}-\mathcal{E}_{\bar{n}}}\right)^{2} \sin ^{2}\left(\frac{\left(\mathcal{E}_{n}-\mathcal{E}_{\bar{n}}\right) t}{2}\right) .
$$

Recall, δ is the interaction that allows neutron to antineutron transition!

$$
\delta=m_{n}^{6} h_{11} \Lambda_{B}^{5}
$$

$$
\begin{aligned}
F & =\text { Flux of neutrons } \simeq 1.25 \times 10^{11} \text { neutrons } / \mathrm{s} \\
v_{\text {avg }} & =\text { average neutron velocity } \simeq 600 \mathrm{~m} / \mathrm{s} \\
L & =\text { distance to annihilation target } \simeq 60 \mathrm{~m} \\
B & =\text { ambient magnetic field } \simeq 10^{-8} \mathrm{~T}
\end{aligned}
$$

Annihilation target and detector

From the average velocity data, the average time for the neutron to make it to the annihilation target is $t_{\mathrm{avg}}=L / v_{\mathrm{avg}} \simeq 0.1 \mathrm{~s}$. This is where the state $|\psi\rangle(t)$ is measured and its wave function collapses to n or \bar{n}, at time $=t_{\text {avg }}$ when it interacts with the annihilation target.

$$
\begin{array}{ll}
P\left[\bar{n}\left(t_{\text {avg }}\right)\right] \simeq \delta^{2} t_{\mathrm{avg}}^{2}=10^{-18}\left(\frac{10^{8} s}{\tau_{n \bar{n}}}\right)^{2}\left(\frac{t_{\mathrm{avg}}}{0.1 s}\right)^{2}, \square & \tau_{n \bar{n}} \simeq\left(2 \times 10^{8} s\right)\left(\frac{F}{1.25 \times 10^{11} \text { neutrons } / \mathrm{s}}\right)^{1 / 2}\left(\frac{T_{\mathrm{run}}}{1 \mathrm{yr}}\right)^{1 / 2} . \\
\text { where } \tau_{n \bar{n}} \equiv 1 / \delta \text { (oscillation time) } & \overbrace{\sim \text { Current limit! }}
\end{array}
$$

Let's explore connection of n-nbar oscillations with baryogenesis
Assume: simple minimal EFT with minimal new particle content that achieves baryogenesis through B violating decays.

These new particles can simultaneously allow n-nbar oscillations \rightarrow correlated

One direction ("Majorana fermion baryogenesis")
Other directions: EW baryogenesis, Affleck-Dine baryogenesis, leptogenesis, ...

Lowest dimensional operator contributing to n-nbar oscillations is dimension 9

$$
\mathcal{O}_{n \bar{n}} \sim(u u d d d d)
$$

We will focus on just one of these operators for illustration, and because it matches the low-scale EFT of the minimal scenario for baryogenesis.

$$
\begin{aligned}
\mathcal{L} \supset & c_{1} \frac{1}{2} \epsilon_{i j k} \epsilon_{i^{\prime} j^{\prime} k^{\prime}}\left(\bar{u}_{i}^{c} P_{R} d_{j}\right)\left(\bar{u}_{i^{\prime}}^{c} P_{R} d_{j^{\prime}}\right)\left(\bar{d}_{k}^{c} P_{R} d_{k^{\prime}}\right)+\text { h.c. }, \\
& \text { with } c_{1} \equiv\left(\Lambda_{n \bar{n}}^{(1)}\right)^{-5} .
\end{aligned}
$$

We performed state-of-the-art RG evolution of the operator coefficient

$$
\begin{aligned}
\frac{c_{1}\left(\mu_{0}\right)}{c_{1}(M)}= & {\left[\frac{\alpha_{s}^{(4)}\left(m_{b}\right)}{\alpha_{s}^{(4)}\left(\mu_{0}\right)}\right]^{\frac{6}{25}}\left[\frac{\alpha_{s}^{(5)}\left(m_{t}\right)}{\alpha_{s}^{(5)}\left(m_{b}\right)}\right]^{\frac{6}{23}}\left[\frac{\alpha_{s}^{(6)}(M)}{\alpha_{s}^{(6)}\left(m_{t}\right)}\right]^{\frac{2}{7}} } \\
= & \{0.726,0.684,0.651,0.624\} \\
& \text { for } M=\left\{10^{3}, 10^{4}, 10^{5}, 10^{6}\right\} \mathrm{GeV}
\end{aligned}
$$

Majorana fermion and B violating operators - but no baryogenesis

Simple way to get n-nbar operator is introduce Majorana fermion X of mass M, coupling to SM by

$$
\mathrm{O}_{6} \sim \frac{1}{\Lambda^{2}} X u d d
$$

Problems creating baryogenesis:

- Nanopoulos-Weinberg theorem: without B-conserving channels no baryon asymmetry
- $2 \rightarrow 2$ process such as $u X \rightarrow \bar{d} \bar{d}$ and $\bar{u} X \rightarrow d d$ have same rate and do not violate CP

$$
\begin{aligned}
\mathcal{L} \supset & \eta_{X_{1}} \epsilon^{i j k}\left(\bar{u}_{i}^{c} P_{R} d_{j}\right)\left(\bar{d}_{k}^{c} P_{R} X_{1}\right) \\
& +\eta_{X_{2}} \epsilon^{i j k}\left(\bar{u}_{i}^{c} P_{R} d_{j}\right)\left(\bar{d}_{k}^{c} P_{R} X_{2}\right) \\
& +\eta_{c}\left(\bar{u}^{i} P_{L} X_{1}\right)\left(\bar{X}_{2} P_{R} u_{i}\right)+\text { h.c. }, \\
& \text { with }\left|\eta_{X_{1}}\right| \equiv \Lambda_{X_{1}}^{-2},\left|\eta_{X_{2}}\right| \equiv \Lambda_{X_{2}}^{-2},\left|\eta_{c}\right| \equiv \Lambda_{c}^{-2}
\end{aligned}
$$

Both X_{1} and X_{2} mediate $n-\bar{n}$ oscillation - integrating them out at tree level gives

$$
c_{1}=\frac{1}{\left(\Lambda_{n \bar{n}}^{(1)}\right)^{5}}=\frac{1}{M_{X_{1}} \Lambda_{X_{1}}^{4}}+\frac{1}{M_{X_{2}} \Lambda_{X_{2}}^{4}}
$$

Calculation of the baryon asymmetry - The relevant processes for baryogenesis include

- B violating processes: single annihilation $u X_{1,2} \rightarrow$ $\bar{d} \bar{d}, d X_{1,2} \rightarrow \bar{u} \bar{d}$, decay $X_{1,2} \rightarrow u d d$, and offresonance scattering $u d d \rightarrow \bar{u} \bar{d} \bar{d}$;
- B conserving processes: scattering $u X_{1} \rightarrow u X_{2}$, coannihilation $X_{1} X_{2} \rightarrow \bar{u} u$, and decay $X_{2} \rightarrow X_{1} \bar{u} u$;
as well as their inverse and $C P$ conjugate processes. $C P$

Calculating baryon asymmetry

We solve set of coupled Boltzmann equations for abundances of $X_{1,2}$ and Y_{B-L} above $T=140 \mathrm{GeV}$ (sphalerons active above 140 GeV) and and Y_{B} below $T=140 \mathrm{GeV}$.

Find regions of parameter space where $Y_{B}=8.6 \times 10^{-11}$

We scan over all the parameters to achieve the proper baryon asymmetry.

Highest priority is getting baryon asymmetry correct - check n-nbar after.
$\Lambda_{\mathrm{X} 1} \sim \Lambda_{\mathrm{X} 2} \sim \Lambda_{\mathrm{c}}$ is "equal interaction scale" case
For $\mathrm{M}_{\mathrm{x} 1} \sim \mathrm{M}_{\mathrm{x} 2}>10^{4} \mathrm{GeV}, \Lambda$ needs to be high to kick system out of efficient interactions that would otherwise suppress $\mathrm{X}_{1,2}$ abundances too much.
$\rightarrow \Lambda$ too high for n-nbar signal
For $\mathrm{M}_{\mathrm{x} 1} \sim \mathrm{M}_{\mathrm{X} 2}<10^{4} \mathrm{GeV}, \Lambda$ still needs to be somewhat high for out-ofequilibrium but then $\varepsilon_{\mathrm{CP}} \sim \mathrm{M}^{2}{ }_{\mathrm{x} 2} / \Lambda^{2}$ is too low for baryogenesis.
\rightarrow Cannot work well for baryogenesis when we force down $M_{x i}$ in this scenario.
Conclusion: $\Lambda_{\mathrm{X} 1} \sim \Lambda_{\mathrm{X} 2} \sim \Lambda$ case maximum possible Y_{B} that also has n-nbar visible at ESS is $\mathrm{O}\left(10^{-13}\right)$, which is two orders of magnitude too low.

Therefore:

Hierarchy of Λ 's needed for good baryogenesis and visible n-nbar oscillation

- Scenario possible for hierarchy in UV theory
- Or EFT generated at different loop orders

Baryogenesis and n -nbar visibility is compatible in two distinct scenarios: Late decays of X_{2} and earlier decays.

Schematic of Late decay and early decay scenarios for baryon asymmetry

FIG. 3. Parameter space of the minimal EFT probed by $n-\bar{n}$ oscillation for the early decay scenario, assuming $M_{X_{2}}=$ $4 M_{X_{1}}$. Points represent solutions with $Y_{B}=8.6 \times 10^{-11}$ found in a scan over $\Lambda_{X_{2}}<\Lambda_{X_{1}}<100 \Lambda_{X_{2}}, M_{X_{2}}<\Lambda_{c}<$ $\Lambda_{X_{2}}$. For all these points, $\Lambda_{X_{1}} \sim 10 \Lambda_{X_{2}}$ is needed to suppress washout. The gray shaded region marks $\Lambda_{X_{2}}<M_{X_{2}}$, where EFT validity requires greater than $\mathcal{O}(1)$ coupling.

Grojean, Shakya, JW, Zhang, PRL 2018
Possibility there for discovery of n-nbar oscillations directly correlated with baryogenesis.

Conclusion

Baryon number conservation is a soft principle that we should expect to be violated.

Baryon violation is needed for baryogenesis - many ideas to implement that.

A minimal, two-state Majorana solution can provide needed baryogenesis

This theory also predicts n-nbar oscillation lifetime

1) $\tau<$ current limit (ruled out parameter space)
2) $\tau>$ future projected limits (never will be seen this way - sad)
3) Current limit $<\tau<$ future projected limits (discovery! - how likely?)
