TKI Event Selection

Xianguo Lu
University of Oxford

ProtoDUNE analysis meeting 2020 July 16

Outline

Purpose of this talk:
To summarize TKI selection and examine reconstruction performance

1. Beam cut
2. Particle definition
3. Selected particles
4. Event selection

Samples by Jake:

data: pionana_5387_6_15_20.root
MC: pionana_mc_1GeV_6_15_20.root

Past presentations

Physics motivation and signal definitions (DUNE Physics Week June 2020)

Reconstruction performance of protons and pions, and refined signal definitions (Analysis Meeting 18 June 2020)

Refined signal definition

Recap

$$
\pi^{+} \mathrm{p}\left({ }^{40} \mathrm{Ar}\right) \rightarrow \pi^{+} \mathrm{p}
$$

1.Pi+ beam
2. At least 1 proton (leading proton kinematics used in calculation)
3.Exactly 1 pi+, no other pions
(Don't care about neutron, gamma, nucleus)
4.Phase space restriction (NEW):

1) Leading proton momentum in $0.45-1 \mathrm{GeV} / \mathrm{c}$
2) Sub-leading proton below $0.45 \mathrm{GeV} / \mathrm{c}$
(No phase space restriction on pi+)

- Z20 p \quad + signal in 3263 1-GeV pi+ beam events

224 in new data sample

Refined signal definition

Recap

$$
\pi^{+} \mathrm{n}\left({ }^{40} \mathrm{Ar}\right) \rightarrow \pi^{0} \mathrm{p}
$$

Event selection $\mathrm{p} \pi^{+}$ $p \pi^{0}$

(current Michel not useful for $\mathrm{pi}+$)

Beam cuts follow pion abs/cex analyses (details in BACKUP)

- All MC normalized to data by event count after beam cut scale factor $=4859 / 2256=2.15$
b024BeamThetaResNOHTXT1PiPlus_TrackingProton_anaRec

Beam θ rec.-truth (deg)
VS
True beam θ (deg)

- Beam θ reconstruction: mostly +5 deg bias
- Large data-MC discrepancy \rightarrow more tests in BACKUP

- After beam cut

b024BeamThetaResNOHTXT1PiPlus_TrackingProton_anaRec

b025RecBeamThetaSTKTXT1PiPlus_TrackingProton_anaRec

b026BeamMomentumResNOHTXT1PiPlus_TrackingProton_anaRec

True beam p ($\mathrm{GeV} / \mathrm{c}$)
Beam momentum at interaction vertex

- $\sim+5 \%$ bias, resolution with long tails
- Data-MC consistent
\rightarrow OK-ish, might need to find a cut to remove bad resolution \rightarrow but probably will improve automatically after requiring p-pi final state due to better vertex determination.
b026BeamMomentumResNOHTXT1PiPlus_TrackingProton_anaRec

Event selection $\mathrm{p} \pi^{+}$ $p \pi^{0}$

- \#proton, \#shower, \#piplus, and \#michel all depends on particle definitions using reconstructed variables discussed in the following slides

Counted as track if

- allTrack_ID != -1
- TrackScore > 0.5
- nHits > 40

- After beam cut

```
reco_daughter_allTrack_ID
reco_daughter_PFP_trackScore_collection
reco_daughter_PFP_nHits
```


- Track candidates

Counted as proton if

- Counted as track
- Chi2/NDF <50 or TME >3.5

As $\mathbf{p i}+$ if

- Counted as track
- Not counted as proton

Xianguo Lu, Oxford
c108CutlastTMESTKTXT1PiPlus_TrackingProton_anaRec

c108CutlastTMESTKTXT1PiPlus_TrackingProton_anaRec_stack

b100ProtonThetaResNOHTXT1PiPlus_TrackingProton_anaRec
 proton θ^{*} rec.-truth (deg)

Vs
True proton θ^{*} (deg)

Selected proton theta wrt beam

- +2-3 deg bias
- Data-MC agree

Contamination from 2ry protons

Xianguo Lu, Oxford
b100ProtonThetaResNOHTXT1PiPlus_TrackingProton_anaRec

 reco_daughter_allTrack_Theta/Phi/momByRange_proton
w.r.t. beam reco

- Proton candidates
b200PiplusThetaResNOHTXT1PiPlus_TrackingProton_anaRec
 pi $+\theta^{*}$ rec.-truth (deg)
vs
True pi+ θ^{*} (deg)

Selected pi+ theta wrt beam

- +2-3 deg bias
- Data-MC agree (except at 0 deg)

Contamination from proton, pi-, 2ry pi+, and muons
b200PiplusThetaResNOHTXT1PiPlus_TrackingProton_anaRec

b201RecPiplusThetaSTKTXT1PiPlus_TrackingProton_anaRec

vs
b102ProtonMomentumResNOHTXT1PiPlus_TrackingProton_anaRec

True proton p (GeV/c)

Selected proton momentum

- -3\% bias
- Data-MC agree
- Proton candidates
b102ProtonMomentumResNOHTXT1PiPlus_TrackingProton_anaRec

b202PiplusMomentumResNOHTXT1PiPlus_TrackingProton_anaRec

vs
True pi+ p (GeV/c)

Xianguo Lu, Oxford
b202PiplusMomentumResNOHTXT1PiPlus_TrackingProton_anaRec

Counted as EM shower if

- allShower_ID != -1
- emScore > 0.5
- Applied for рл0 channel only: shower distance 3-90 cm (tuned to have maximal signal event eff*purity)

```
reco_daughter_allShower_ID
reco_daughter_PFP_emScore_collection
```

- After beam cut

b301RecMpi0STKTXTMPiZero_TrackingProton_anaRec

b303RecLDMpiOSTKTXTMPiZero_TrackingProton_anaRec_stacksum

- pi0 candidates

from leading showers = leading pi0

Reconstructed pi0 mass

* peak in wrong position
* The MC signal distributions below show the pi0 is indeed reconstructed form gamma.

b303RecSLMpiOSTKTXTMPiZero_TrackingProton_anaRec_stacksum

As Michel if

- MichelScore > 0.5

- After beam cut

Event selection $\mathrm{p} \pi^{+}$ $p \pi^{0}$

- \#proton, \#shower, \#piplus, and \#michel all depends on particle definitions using reconstructed variables discussed in previous slides

Xianguo Lu, Oxford
c200CutnshowerSTKTXT1PiPlus_TrackingProton_anaRec

c200CutnshowerSTKTXTMPiZero_TrackingProton_anaRec

1 n shower $>=2$

Xianguo Lu, Oxford
c202CutnpiplusSTKTXT1PiPlus_TrackingProton_anaRec

c202CutnpiplusSTKTXTMPiZero_TrackingProton_anaRec

c202CutnpiplusSTKTXTMPiZero_TrackingProton_anaRec_stack

Xianguo Lu, Oxford
on \# piplus $=0$

c201CutnmicheISTKTXT1PiPlus_TrackingProton_anaRec
c201CutnmicheISTKTXTMPiZero_TrackingProton_anaRec

Xianguo Lu, Oxford

Cut

 efficiencies $\mathrm{p} \pi^{+}$ $p \pi^{0}$

MC Data

1) $25.2 \% \quad 1) 25.8 \%$
2) $10.7 \% \quad$ 2) 10.8%
3) $83.6 \% \quad 3) 80.9 \%$
4) 96.1% 4) 85.5%
$=0 \quad$ 2) Requirement on \# shower $>=2$
$=1 \longrightarrow$ 3) Requirement on \# piplus $\longrightarrow 0$

(current Michel not useful for $\mathrm{pi}+$)
5) Requirement on \# michel $=0$

- Cut efficiency consistent between data and MC for proton and shower selections
- Pi+ and michel counting needs to be improved
b101RecProtonThetaSTKTXT1PiPlus_TrackingProton_anaRec

b103RecProtonMomentumSTKTXT1PiPlus_TrackingProton_anaRec

b201RecPiplusThetaSTKTXT1PiPlus_TrackingProton_anaRec

b203RecPiplusMomentumSTKTXT1PiPlus_TrackingProton_anaRec

b101RecProtonThetaSTKTXTMPiZero_TrackingProton_anaRec

b301RecMpi0STKTXTMPiZero_TrackingProton_anaRec


```
signal
background
non-\pi+ beam
data
```

Pi0 mass peak in wrong position

Xianguu Lu, oxford $-\mathrm{p} \pi^{0}$ event candidates

Summary and discussions

Looked at beam, proton, pi+, and shower selection and reconstruction

1. Beam
1) Angle has issues (p6)
2) Energy at interaction vertex OK (p7)
2. Proton
1) Angle (p11) and momentum (p13) reconstruction is OK
2) Has physics background from secondary protons ($\mathrm{p} 11,13,24$), check if reconstruction can handle them - after event selection, p $\pi 0$ channel is less affected (p25)
3. Shower
1) Reconstructed pi0 mass (p16, p25) is not physical
4. Pi+
1) Forward angle (p12) has large data excess due to intrinsic difficulty when beam and final state are the same particle
$>$ Require very precise vertexing (FS proton helps)
2) Momentum-by-range (p14) start to fail at $0.3 \mathrm{GeV} / \mathrm{c}$ due to onset of inelastic scattering
$>$ See previous detailed discussions (Analysis Meeting 18 June 2020)
3) Contamination from proton, pi-, (physics bkg) 2ry pi+, and muons (p12, 14, 24).

MC	All Signal	Selected signal	Selected sample	purity	efficiency	```effciency*pur ity```
$\mathrm{p} \pi+$	224.0	44.0	126.0	34.9\%	19.6\%	6.9\%
$\mathrm{p} \pi 0$	246.0	35.0	49.0	71.4%	14.2%	10.2%

BACKUP

myEntries 0
AnaUtils: :GetRecBeamFull using version -1
All entries 26330
1PiPlus_TrackingProton_anaRec 0. Beam ID : all 26330 selected
c000CutBeamIDTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 1. Pandora beam type
c001CutBeamTypeSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 2. Beam Pos
c002CutBeamPosPassSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 3. APA3
c004CutBeamEndZPassSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 4. Nproton
c203CutnprotonSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 5. Nshower
c200CutnshowerSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 6. Npiplus
c202CutnpiplusSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 7. Nmichel
: all 3636.0 selected
: all 3203.0 selected
: all 2657.0 selected
. all 2256.0 selected
. all 569.0 selected
: all 329.0 selected

201CutnmichelSTKTXT1PiPlus_TrackingProton_anaRec
End of 8 cuts: 126.0 selected
kPiZero 0 fullsig 224.0 signal 44.0 all 126.0 purity 34.9% eff 19.6% ep 6.9%

Running anaRec kMC 0 kPiZero 0 TrackingProton 1
myEntries 0
All entries 32600
1PiPlus_TrackingProton_anaRec 0. Beam ID : al
c000CutBeamIDTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 1. Pandora beam type
001CutBeamTypeSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 2. Beam Pos
.all 17708.0 selected
. all 14862.0 selected
all 6365.0 selected
: all 4859.0 selected
: all 1254.0 selected
708.0 selected
: al
322.0 selected
orcutbeamPosPassSTKIXI1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 3. APA3
c004Cut BeamEndZPassSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 4. Nproton
c203CutnprotonSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 5. Nshower
c200CutnshowerSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 6. Npiplus
c202CutnpiplusSTKTXT1PiPlus_TrackingProton_anaRec
1PiPlus_TrackingProton_anaRec 7. Nmichel
c201CutnmichelSTKTXT1PiPlus_TrackingProton_anaRec
End of 8 cuts: 320.0 selected
anaRec beamcount data: $4859 \mathrm{mc}: 2256$ plotscale 2.153812
3636.0 fraction 13.8% 3203.0 fraction 88.1%
2657.0 fraction 83.0\%
2256.0 fraction 84.9\%
569.0 fraction 25.2%
329.0 fraction 57.8\%
126.0 fraction 38.3\%
126.0 fraction 100.0%
17708.0 fraction 54.3%
14862.0 fraction 83.9\%
6365.0 fraction 42.8%
4859.0 fraction 76.3%
1254.0 fraction 25.8%
708.0 fraction 56.5%
322.0 fraction 45.5%
320.0 fraction 99.4\%
myEntries 0
AnaUtils: : GetRecBeamFull using version -1
All entries 26330
MPiZero_TrackingProton_anaRec 0. Beam ID : all 26330.0 selected
c000CutBeamIDTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 1. Pandora beam type
: all 3636.0 selected
: all 3203.0 selected
MPiZero_TrackingProton_anaRec 2. Beam Pos
c002CutBeamPosPassSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 3. APA3
c004CutBeamEndZPassSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 4. Nproton
all 2657.0 selected
: all 2256.0 selected
c203CutnprotonSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 5. Nshower
: all 569.0 selected
: all 61.0 selected
(1)

MPiZero_TrackingProton_anaRec 6. Npiplus
MPiZero_TrackingProton_anaRec 7. Nmichel
: all
51.0 selected
3636.0 fraction 13.8% 3203.0 fraction 88.1% 2657.0 fraction 83.0\% 2256.0 fraction 84.9% 569.0 fraction 25.2%
61.0 fraction 10.7%
51.0 fraction 83.6%
49.0 fraction 96.1%
c201CutñichelSTKTXTMPiZero_TrackingProton_anaRec
End of 8 cuts: 49.0 selected
kPiZero 1 fullsig 246.0 signal 35.0 all 49.0 purity 71.4% eff 14.2% ep 10.2%

Running anaRec kMC 0 kPiZero 1 TrackingProton 1
myEntries 0
All entries 32600
MPiZero_TrackingProton_anaRec 0. Beam ID
: al
c000CutBeamIDTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_ānaRec 1. Pandora beam type
: all 17708.0 selected
c001CutBeamTypeSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 2. Beam Pos
: all 14862.0 selected
002CutBeamPosPassSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 3. APA3
all 6365.0 selected
c004CutBeamEndZPassSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 4. Nproton
all 4859.0 selected
203CutnprotonSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 5. Nshower
c200CutnshowerSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 6. Npiplus
all 1254.0 selected
: all 136.0 selected
110.0 fraction 80.9\%

202cutnpiplusSTKTXTMPiZero_TrackingProton_anaRec
MPiZero_TrackingProton_anaRec 7. Nmichel
c201CutnmichelSTKTXTMPiZero_TrackingProton_anaRec
End of 8 cuts: 94.0 selected
anaRec beamcount data: $4859 \mathrm{mc}: 2256$ plotscale 2.153812

[follows pion analyses]
Beam cuts (data stat. vs. MC):

1. PID $32600 \rightarrow 17708$ (54.3\%) vs. (13.8\%)
2. Track-like $17708 \rightarrow 14862$ (83.9\%) vs. (88.1\%)
3. Beam position $14862 \rightarrow 6365(42.8 \%)$ vs. (83.0\%)
4. APA3 (next page) $6365 \rightarrow 4859$ (76.3\%) vs. (84.9\%)

- Data and MC have very different cut efficiency
- Beam cut

Xianguo Lu, Oxford
c003CutBeamEndZSTKTXT1PiPlus_TrackingProton_anaRec

c004CutBeamEndZPassSTKTXT1PiPlus_TrackingProton_anaRec

- All MC normalized to data by event count after beam cut scale factor $=4859 / 2256=2.15$

Before beam cut

- Seen two Bethe-Bloch at beam entrance
- Seen Bragg peak
- Data MC not agree - expected

b020BeamPCStartE2STKTXT1PiPlus_TrackingProton_anaRec

After beam cut
data

- Seen only pion-like dEdx
- Data and MC consistent, neither show unexpected dEdx
- Peak shape not perfect in either ends \rightarrow is it just understanding of dEdx or contamination?
- Proton Bragg peak might still hide in long tail of near vertex, but should be cleaned up by requiring interaction.

dEdx near track end has large data-MC discrepancy around proposed cut value at 10
\rightarrow not to use for the moment

- Track candidates

b104RecProtonLastE2STKTXT1PiPlus_TrackingProton_anaRec

b105RecProtonLastTMESTKTXT1PiPlus_TrackingProton_anaRec

Xianguo Lu, Oxford
b106RecProtonStartE2STKTXT1PiPlus_TrackingProton_anaRec

b107RecProtonStartTMESTKTXT1PiPlus_TrackingProton_anaRec

b204RecPiplusLastE2STKTXT1PiPlus_TrackingProton_anaRec

b205RecPiplusLastTMESTKTXT1PiPlus_TrackingProton_anaRec

b206RecPiplusStartE2STKTXT1PiPlus_TrackingProton_anaRec

b207RecPiplusStartTMESTKTXT1PiPlus_TrackingProton_anaRec

- $\mathrm{pi}+$ candidates no further improvement on purity using dEdx
b302RecShowerEnergySTKTXTMPiZero_TrackingProton_anaRec

b302RecShowerEnergySTKTXTMPiZero_TrackingProton_anaRec_stack

- No cut on shower energy
- Only use leading and subleading showers to reconstruct pi0 = leading pi0 in all shower combinations

Shower candidates in $\mathrm{p} \pi 0$ channel

b025RecBeamThetaSTKTXT1PiPlus_TrackingProton_anaRec

b025RecBeamThetaSTKTXT1PiPlus_TrackingProton_anaRec

borkecbeamThetaSTKTXTIPIPus_TrackingProton_anaRec

b025RecBeamThetaSTKTXT1PiPlus_TrackingProton_anaRec

c109CutShowerPhiSTKTXTMPiZero_TrackingProton_anaRec

c109CutShowerPhiSTKTXTMPiZero_TrackingProton_anaRec_stack

c109CutShowerThetaSTKTXTMPiZero_TrackingProton_anaRec_stack

b304RecShowerDiffPhiSTKTXTMPiZero_TrackingProton_anaRec

b304RecShowerDiffThetaSTKTXTMPiZero_TrackingProton_anaRec

Difference between
reco_daughter_allShower_startX/Y/Z reco_beam_endX/Y/Z and
reco_daughter_allShower_dirX/Y/Z

END

