

Design Of Cold Support Post -for Cryomodules

- Rupul Ghosh
- S.Gilankar
- Prashant Khare
- A Laxminarayan
- P.K.Kush

- 1. Purpose of this design Note
 - a. To get the calculations verified
 - b. To get the drawings verified
 - c. To seek inputs on different protoptype tests
 - d. To seek advise on the tubes that we are planning to procure
- 2. Cryogenic Support post functions
- 3. Calculations made to determine the dimensions
- 4. Prototyping Plan
- 5. Querries

Drawing of the new CSP

To create more space

- •Support post length reduced
- •Thermal shield Shape Changed

Support Post modelled as Three Component Compound Cylinder

Contact Pressures Develop due to Elastic Resistance of materials and Interference Disc and Ring Can Support Load due to Contact Pressure and Friction at the Interfaces

'E' -- Young's Modulus'μ' -- Poisson's Ratio of Materials

 δ_i Diametral Interference between Tube and Inner Disc δ_o Diametral Clearance between Tube and Outer Ring

24-May-11

Load bearing Capacity of Prototype

ID of Al Disc, $d_1 =$

ID of G11Tube, $d_2 =$

OD of G11Tube, $d_3 =$

Thickness of Disc/Ring, h

Diametral Interference b/w Disc and Tube, δ_i

Diametral Clearance b/w Disc and Tube, δ_{n}

OD of Al Disc, d_a =

0.12 mm

0.02 mm

10mm

92mm

15mm

57.02mm

63.02mm

Poisson's Ratio Al 6061T6c Disc μ_1 =	0.33
Poisson's Ratio G11 Tube $\mu_2 =$	0.2
Poisson's Ratio Al 6061T6c Ring μ_3 =	0.33

Young's Modulus Al 6061T6 Disc, E ₁ =	70Gp a
Young's Modulus G11 Tube, $E_2 =$	28Gpa
Young's Modulus Al 6061T6 Ring, E ₃ =	70Gp a

Max Axial Load taken by Inner Joint F _i =	2700 Kg
Max Axial Load taken by Outer Joint $F_0 =$	2361 Kg
Contact pressure at Inner Joint P _i =	32.8 MPa
Contact Pressure at Outer Joint P _o =	26 MPa

Radial and Circumferential Stresses Developed at ID & OD of Disc, Tube and Ring material

Inner Disc Al 60	61T6			
Stresses at Disc ID		Stresses at Disc OD		
Radial	OMP a	Radial	-32.8MPa	
Circumferential	-67.7MPa	Circumferential	-35MPa	
Tube G11				
Stresses at G11 ID		Stresses at G11 OL)	
Radial	- 32.8MP a	Radial	-26MPa	
Circumferential	42.7MPa	Circumferential	36MPa	
Outer Ring Al 60)61T6			
Stresses at Ring ID)	Stresses at Ring Ol	D	
Radial	-26MPa	Radial	OMP a	
Circumferential	70MPa	Circumferential	46MPa	
Allowable Stress G	611	62Mpa		
Allowable Stress Al6061 T6		70MPa		
Allowable Stress SS304		130Mpa		

Inner Disc to be Cooled with LN₂ Calculate OD of Disc after Cooling Find Effective Diametral Clearance available for making the Assembly

Effective Diametral Clearance for Assembly = ID of G11 Tube – OD of Disc after Cooling

If Effective Diametral Clearance Is Not Enough Reduce the Interference between Tube and Disc

ID G11 Measured	Diametral Interference	OD Al Disc before Shrink Measured	Al shrinkage upto 80 K	OD Al Disc after Shrink Calculated	Effective Diametral Clearance for Assembly
57.02mn	n 0.12 mm	57.14 mm	0.21 mm	56.93 mm	0.09 mm

Tube Material --G11 (NEMA LI 1) OD 300 mm, Thickness 2.5 mm

Property	Value	Test Method
Flexural Strength	350 MPa	ISO 178
Compressive Stress Axial	250 MPa	ISO 604
Density	1.8 g/cm3	IEC 1183-A
Water Absorption	0.3 mg/cm3	IEC 62-1

Sketch of Fixture under Development

Initially 4.5 K Disc /Ring Assembled Next, 70 K Disc/Ring Assembled with the Fixture Shown 300 K and 1.8 K Disc/Ring Assembled at the End

Heat In-Leak through Support Post Compared with earlier situation

Prototype Fabrication

Prototype Testing

Prototype Test Result

Load Testing of Inner Joint

- 4K shield : In CW cryomodule, Is MLI Required if so then how will it be assembled
- Reason for Undulation in the Load v/s Displacement Plot.