Sterile neutrinos in the cosmos

Maria Archidiacono University of Milan

NF02 Mini-Workshop, September 25th, 2020

Which sterile neutrinos?

• eV sterile neutrinos

Motivation:

Cosmology: Hot Dark Matter

• keV sterile neutrinos

Motivation:

Cosmology: Warm Dark Matter

eV sterile neutrinos

Theoretical efforts BSM physics

LOI: Sterile Neutrinos with Non-Standard Interactions; Archidiacono, Hannestad+

Early Universe

Late Universe

Theoretical efforts BSM physics

LOI: Sterile Neutrinos with Non-Standard Interactions; Archidiacono, Hannestad+

Early Universe

Future directions

Cosmology

Astrophysics

Particle Physics

Cosmological observations

$$\rho_{rad} = \rho_{\gamma} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right]$$

$$N_{\rm eff} = 3.045 + \Delta N_{\rm eff}$$

$$\Delta N_{\text{eff}} = 0.027 g_{*,\phi} \left(\frac{g_{*,\text{SM}}}{g_{*}(T_{\text{F},\phi})}\right)^{4/3}$$

$$g_{*,\text{SM}} = 106.75$$

Figure from LOI: Insights for Fundamental Physics and Cosmology with Light Relics; Meyers+

LOI: CMB-HD: An Ultra-Deep, High-Resolution Millimiter-Wave Survey Over Half the Sky; Sehgal+, $\sigma(N_{eff})=0.014$

See also LOI: Cosmological Neutrinos; Grohs+

Astrophysical observations

LOI: IceCube Neutrino Observatory; Grant, Halzen+, IceCube Collaboration

LOI:IceCube-Gen2: The Window to the Extreme Universe; Karle, Kowalski+,

IceCube-Gen2 Collaboration

LOI: Cosmic Neutrino Probes of Fundamental Physics; Bustamante+

- Sterile neutrinos (energy spectrum)
- NSI (energy spectrum)
- DM v interactions (arrival direction)

Astrophysical observations

LOI: IceCube Neutrino Observatory; Grant, Halzen+, IceCube Collaboration LOI: IceCube-Gen2: The Window to the Extreme Universe; Karle, Kowalski+,

IceCube-Gen2 Collaboration

LOI: New physics with astrophysical neutrino flavour; Arguelles+, IceCube-Gen2 Collaboration

Astrophysical

observations

LOI: IceCube Neutrino Observatory; Grant, Halzen+, IceCube Collaboration LOI:IceCube-Gen2: The Window to the Extreme Universe; Karle, Kowalski+, IceCube-Gen2 Collaboration

LOI: Supernova Burst and Other Low-Energy Neutrino Physics in DUNE; Patterson, Worcester+, DUNE Collaboration

Theoretical uncertainties and computational effort:

LOI: Deciphering explosion physics from the supernova
neutrino signal; Friedland+

keV sterile neutrinos Status

keV sterile neutrinos Future prospects

LOI: Prospects for keV Sterile Neutrino Searches with KATRIN Mertens+

keV sterile neutrinos Future prospects

LOI: Prospects for keV Sterile Neutrino Searches with KATRIN Mertens+

keV sterile neutrinos Future prospects

LOI: Dark Matter Searches with the Micro-XX-ray Sounding Rocket Figueroa-Feliciano, Hubbard+

- significantly less expensive than satellite missions, and the instrument can be recovered after flight and reflown
- Micro-X has the sensitivity to discern between dark matter and atomic origin of the 3.5 keV line

Conclusions

Cosmology

Astrophysics

- CMB-S4
- CMB-HD
- Euclid
- Vera Rubin Obs.
- SKA

- IceCube
- DUNE
- Micro-X

VS

Neutrino oscillation experiments

(see next talks)