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AXION-LIKE PARTICLES

® The low-mass pseudo-Goldstone bosons which arises from

the breaking of an anomalous (chiral) global symmetry is
referred as Axion-Like particles (ALPs).

= ALPs can be found in many models of physics beyond the
SM such as supersymmetric theories and string theory.

= ALPs can couple to the gauge fields in a manner
proportional to the gauge anomaly.
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ALPS AND PORTAL TO THE HIDDEN SECTOR
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» ALPs are ideal candidates to act as mediators to the hidden
sector via the so-called “axion portal.”
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ALPS IN B MESON DECAY

= The phenomenology of the ALP coupling to
photons is well studied.

Y
a y = The SM photon is a linear combination of the
wr hypercharge and SU(2) gauge fields, thus ALP
;ij&% coupling to photons also implies that ALP can
5 — <— «— 73 | couple to W*/Z bosons.
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= The SM flavor-changing meson decay is of the same
order as ALP production in the weak interaction.,
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ALPS IN B MESON DECAY

projected search for ALP coupling to photons
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= B* - K*a,a - yy decay is fully reconstructible
and has very low background (dominated by the
| continuum QCD and BB processes, with QED
backgrounds subdominant).
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BABAR
EXPERIMENT

Low energy asymmetric
e e™ collider.

Y(4S) are produced at very

high rate which then decay
into a pair of charged B-
mesons.

Luminosity of 424 b,
which corresponds to
2.4%x108 pairs of charged B-
mesons.
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SUMMARY OF THE ANALYSIS AND STRATEGY

= We perform a blind analysis on 8% of the data to avoid bias before applying the method to the
full data.

" We search for a narrow peak in the resulting di-photon invariant mass spectrum from
B* - K*a,a - yy for 0.1 GeV < m < 4.78 GeV.

= To account for the irreducible backgrounds around 7%, 7, and " we exclude the ALP hypothesis
masses in their peaking intervals: 0.1 — 0.175 GeV, 0.45 — 0.63 GeV,and 0.91 — 1.01 GeV.

= The irreducible background B — K<yy has a very small branching fraction (~1077).



SUMMARY OF THE ANALYSIS AND STRATEGY

" WWe train Boosted Decision Trees (BDTs) to separate signal events from backgrounds.

"  We extract the signal by scanning the di-photon invariant mass spectrum for ALP candidate
peak that pass our selections.

= We measure the signal branching fractions (BFs) of B¥* - K*a,a — yy for ALP mass in range
of 0.1 GeV < m, < 4.78 GeV.

= For m, < 2.5 GeV,ALPs can be long lived, and we additionally determine signal BFs for ct =
1,10,100 mm for 0.1 GeV < m, < 2.5 GeV. ’



MONTE CARLO SIMULATIONS

= Signal Monte Carlo (MC) events are generated with EVTGEN, promptly decaying samples
for 24 ALP mass points (0.1 — 4.78 GeV), long-lived samples for 16 ALP mass points (0.1 —
2.5 GeV). 30000 signal events are generated at each mass point.

= MC Backgrounds are samples generated and weighted to data luminosity:
de et >qq(q=u,d,s,c) (JETSET)
J e"et - BB (EVTGEN)
d e et ->e et (y) (BHWIDE)
de et >uut(y), 7717 (y) (KK with TAUOLA)

—

— Predominant

\

)

— QED - Subdominant

* The detector response simulation based on GEANT4.



SELECTIONS

= Pre-selections: Suppress non-B background by cut on

4 |AE| — |Ebeam,CM — EB,CM| < 0.3 GeV
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5 T PBDi
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0 5.0 GeV < mgg = ( ) — p; < 5.4 GeV

N

) Kinematic fit required the di-photon and K* originated from the B* candidates using beam

spot, beam energy constraint,and B* mass constraint.
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SELECTIONS

= Train Boosted Decision Trees (BDTs) on MC for the two predominant backgrounds:

de et ->qq(q=ud,s,c)

0 e et - BB

"  We train and test the BDT classifier using ROOT TMVA algorithm.

"  We train our BDTs using the Gradient Boosting method. '



SELECTIONS

We use |3 training variables:

Beam-energy substituted mass mgg

Helicity angle of a daughter photon with
highest energy

Difference between beam energy and B+
energy in CM frame AE

Kaon helicity angle

Invariant mass of all tracks and neutral
clusters except B¥ - K*a candidate

Number of neutral clusters in event

Maximum K PID selector

Cosine of angle between sphericity axes of
B* candidate and rest of event (ROE)

2" Legendre moment of ROE, calculated
relative to BT thrust axis

Maximum of a daughter photon energies

Difference between 7°, 1, or n’ mass and the
reconstructed mass from a pair of a and
non-a daughter photons



SELECTIONS

Final cut on BDTs classifier: Ve found the optimal pair of selection is = 0.13 for the
continuum-trained BDT,and > 0.15 for the BB-trained BDT for all signal masses.
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DI-PHOTON MASS SPECTRUM
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The peaking of background
correspond with %, 77, 7" masses.

2.60 local signal significance at 7,
mass, consistent with the world
average BF of B* - K*n_,n. = vy.

Set conservative limits on ALP at this

mass 7). by assuming all events are
signal.



SIGNAL RESOLUTIONS

We fit the signal MC distribution with a double-sided Crystal Ball function and take the
parameter o of the Gaussian component as the resolution.

We construct a linear interpolation of signal histogram between adjacent signal points.

Comparing data and MC of BT > K*h (h = ﬂo,n,n') validates the signal resolutions within
3%.

We also derive signal efficiency for MC which are approximately 30% over most of the mass
range.



SIGNAL EXTRACTION

" We determine the step size between 476 hypothesis mass points by the signal resolution
excluding masses near 7°,7,7n':

2 100 MeV <m, < 175 MeV: w®
J 450 MeV < m, < 630 MeV: n

2 091 GeV <my < 1.01GeV: 7’

= We extract the signals by a series of unbinned maximum likelihood fits.

= The fit windows are symmetric with half-width ranging from +(30 — 70)o (where o is the

signal width) depending on the mass and the proximity to peaking 7%, 71,7’ -



SIGNAL EXTRACTION

* The likelihood function includes contribution from the signal, continuum background, and
peaking background.

* We derive signal PDFs from MC and linearly interpolate between simulated masses.
= Continuum background PDFs:
J For m, < 1.35 GeV, we use a second-order Chebyshev polynomial
J For m,; = 1.35 GeV, we use a first-order Chebyshev polynomial.
= Each peaking resonance PDF is modeled as a sum of a signal template and a broader

Gaussian distribution with parameters fixed to fits in MC — this component arises from 17
continuum production of meson resonance that is broadened because of kinematic fit.



SIGNALYIELD: SAMPLE FITS
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SIGNALYIELD: SIGNAL EVENTS AND LOCAL SIGNIFICANCE.

100

Most significant excess < 1o after
including trial factors to account
for look-elsewhere effect.

No significant signal observed.



SYSTEMATIC UNCERTAINTY

= Assess uncertainty on signal yield from fit by varying order of polynomial for continuum
background (3" order for m, < 1.35 GeV, constant at higher mass), varying shape of peaking
background within uncertainties, and using next-nearest neighbor for interpolating signal shape.

] Dominate total uncertainty for some masses in vicinity of 7° and 7.

= Systematic uncertainty on signal yield from varying signal shape width within uncertainty is on
average 3% of statistical uncertainty.

= 6% systematic uncertainty on signal efficiency, derived from data/MC ratio in vicinity of n'.

= Other systematic effects are negligible by comparison, including the limited signal MC statisticg
and luminosity.



BRANCHING FRACTION

" We derive Bayesian limits on the branching fraction at the 90% CL.
J Taking the flat prior for non-negative values branching fraction.

) We convolve the likelihood function with a Gaussian distribution with standard deviation
equal to the total systematic uncertainty.

Npest—
Br(B* — K*a) = .
2O-B+B—£int€sig

21



BRANCHING FRACTION LIMIT
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For m, < 2.5 GeV, we probe couplings for which ALP becomes long-lived.

Re-do the analysis with lifetime of ¢t = 1,10, 100 mm using single-sided Crystal Ball function to

model the resolution. — Bias in reconstruction of signal mass.

We do not re-optimize; we rather assess the sensitivity.
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LONG-LIVED ALPS

Background shape and window
width systematic are larger; others
stay the same.

No significant signal found; We
derive the upper limit of BFs at the
90% CL.
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ALP COUPLING CONSTRAINTS
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CONCLUSION

= This is the first search for ALPs in B¥ - K*a,a — yy decay.
" No significant signal found.

" New 90% CL constraints on ALP coupling with W boson are derived which are over 2 order
of magnitude stronger than existing constraints.

" Flavor-changing mesons decays are proven to be a good channel to look for ALPs.
= Data from BABAR experiment promises further contributions to the search for hidden sector.

= Zoom discussion: see link on Indico, available in Flavor and Precision Physics Panel | at
8:30 am CT, June | 1. 2



