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1.The (g-2) puzzle: SM and beyond
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* Lepton and quark sectors: blue lines indicate
the interactions permitted by the SM

e Of particular interest for this talk: lepton-photon
Interaction
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The Standard Model
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* [n Pauli non-relativistic theory, for the intrinsic magnetic
moment of a particle g can be anything

* In Dirac’s wave equation approach, g=2 for elementary spin
1/2 particles
Here, e is electric charge, m is particle mass and

g is a dimensionless number parameterising the * In full QFT, calculable corrections to the g=2 result
size of the magnetic moment
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_ EXP

* Long-standing (recently updated) anomaly — perhaps
hinting at new physics that couples to muons

* Many papers investigate possible new physics

explanations

e Other muonic anomalies corroborate the idea of new

physics coupling to muons, e.g.
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Aag = a, " — ag The electron g-2

e Established precision test for the SM and QED:

e ‘Measuring’ the fine structure constant, «, Deviation from SM prediction Significance
dSSUMmes:

CLSM(Oé) _ CLEXP — Aaﬂ — (286 T 076) X 10_9 4.20

€

Aat® = —(0.88 4+ 0.36) x 107 2| 2.50

e This would assume no anomaly! So we require a e Saror ot 4l 184904130
determination of « independent of g-2.

AP = (4.8 £3.0) x 1073| 1.60

Morel et al 2020, INSPIRE: 1837309

e Two conflicting experimental results for «, via

iInterferometry experiments, disagree by more
than 5 sigma:

1. Using Cs, anomaly opposite sign to the muon So far, no resolution to this disagreement

2. Using Rb, anomaly (?) in the same sign as the muon




— e 2 5
Lo, =1 4m€ Oy — dg§c7ny5) (F

Magnetic dipole
moment

__exp SM
Aay =a, " — a;

Deviation from SM prediction Significance

Aa,, = (2.86 £0.76) x 10~ |4.20
Aa. = —(0.88 £0.36) x 107 | 2.5 ¢

I'he g-2 anomalies

While electron g-2 is still unresolved, we focus on the
more significant anomaly, also because it is a more
Interesting problem to tackle.

The Problem

 Anomalies in the electron and muon magnetic dipole moments

* Deviations have opposite sign, but comparable magnitude

e Could there be a common origin via flavour-violating couplings?




2. Scalar LQ solutions
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Scalar LQ models

e Leptoquarks (LQ) are hypothetical particles which directly couple
SM leptons and quarks

 There are a finite set of scalar LQ (for a review, see arXiv: 1603.04993)

* LQ masses and Yukawa couplings between SM and BSM fields
are generically free parameters, e.g.

Left-handed coupling

Right-handed coupling




L, = 0©

Left-handed coupling

Right-handed coupling

Mixed chiral scalar LQs

* Mixed-chiral LQ have both L and R couplings

e Could generate sizeable corrections to (g-2) at
one-loop level (enhanced via internal quark-
mass insertion)

The highlighted LQ are mixed-chiral

Symbol | SU (3)c ® SU(2)r, @ U(1)y |Mixed chiral
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Mixed chiral scalar LQs

Ly, = 4(c) [yRPR + yLPL] q QbT + h.c.
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sign-definite variable sign

For these two LQ, we can exploit this variable sign term to give flavour-dependent, opposite sign, corrections




3. Overcoming hurdles via a coupling ansatz



A flavour ansatz

Yukawa couplings with SM fields are generally free parameters, so we
have some choices to make.

| will preface this next discussion by saying that the
what I'm about to discuss isn’t showing a basis-
dependence of a physical result (that would be ludicrous!)

* The argument here is that: a choice of basis can affect
how clear it is to make definitive claims about a
model's viability.




A flavour ansatz

How easy is it to turn on or off couplings between particular flavours?

The answer lies in the choice of where | put the CKM.

L3 = (L5 \noQL + €S eutir) S|+ hec.,

EWSB and rotating fields 2. R Aoy Ry — 15°
INnto mass-eigenstates 10 ‘r T
g /
L7 Dy, [ije(i ULk — Vi AL, j} 51

Recalling that: V = £ £, Down-type JF?/szu@R UR JST + h.c..




Up’ and ‘down’ type bases

 Now imagine we want to switch-off a particular coupling: e.g.
as above

LH coupling between electron and top-quark

2 o

1. fgLQ =0 Simple
LSl B ygfLQ [V eL GUL Kk — VIC—J idLaj] SI
S 2. SLQ
‘Down-type’ _|_yzjeu€R i UR JSJ[ + h.c., y,lj Vg]t") =0 Messy

We should guide our basis choice by looking at what couplings we want to control the most — motivated by
observables and constraints



A downside of the ‘down’ type basis

sign-definite

* If we did work in the down-type quark basis, this makes it
hard for us to determine a viable zero texture for the Yukawas

* Why? It turns out that because of:

A. The enhancement of a top-quark in the loop

B. The strength of the MEG constraint  [1 —> €7y

Even if just a “'small’ coupling to the top is generated for both
lepton flavours, we hit the MEG limit —- invalidating the model

You can see how one may be tempted to rule out all

scalar LQ models if you only looked in the down-type
basis.




Establishing the models
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' ' Adopting the ‘up-type’ basis :
qi 14
7 o e Contribution to (g-2) of the electron is via a charm-containing loop
/\W e Contribution to (g-2) of the muon is via a top-containing loop
i ; - ,
* Constraints from MEG in particular avoided by having different
intermediate SM quarks coupling for each g-2
* Restrict all NP couplings to real values.
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4. Outline of key results



Single mass scans

Now that we have two viable models, assessing constraints using two different scan methods:

Method 1: Fixed RH couplings around (g-2)

1. Logarithmically sample 2 x LH couplings Method 2: decoupled electron and muon sectors

2. Calculate RH couplings according to (g-2), outputting

, , separately sampling LH and RH couplings
real-value generating point closest to central values

logarithmically

3. Check generated RH coupling under perturbativity constraint.

4. Check other constraints



S1 Leptoguark: benchmark study

Method 1
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R2 Leptoquark: benchmark study
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Conclusions

Based on Phys.Rev.D 102 (2020) 7, 075037 - e-Print: 2002.12544 [hep-ph]

* \We have argued the viability of single LQ simultaneous solutions to anomalies in g-2 of
the electron and muon.

* |dentified the two mixed chiral scalar LQ, capable of generating sign-dependent
contributions to leptonic g-2 observables.

* LFV constraints can be avoided by allowing contribution to the electron g-2 from charm-
containing loops, and muon g-2 from top-containing loops.

* Extending to complex couplings motivates consideration of EDMs as well as g-2
(manuscript in preparation)


https://arxiv.org/abs/2002.12544
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Which zero texture”

[0 ensure we have the mass-enhanced mixed-chiral
contribution, the zero texture of the LH and RH Yukawas
should be identical

0 O 0 0
Texture 1 ~ | 0], Texture 2~ | o 0
0 0 O 0 0 O
Charm- muon Charm- electron
OR
Top- electron Top- muon

Charmphilic solution to muon g-2 with leptoquarks,
arxiv:1812.06851. Only possible to do muon g-2 within two sigma.



