Getting Chirality Right

single scalar leptoquarks and lepton magnetic dipole moments

Innes Elizabeth Bigaran

Based on Bigaran, I., Volkas, R.R. Phys.Rev.D 102 (2020) 7, 075037 ○ e-Print: 2002.12544 [hep-ph]

Overview

- 1.The (g-2) puzzle: SM and beyond
- 2. Scalar LQ solutions
- 3. Overcoming hurdles via a coupling ansatz
- 4. Outline of key results
- 5. Conclusions

- 1.The (g-2) puzzle: SM and beyond
- 2. Scalar LQ solutions
- 3. Overcoming hurdles via a coupling ansatz
- 4. Outline of key results
- 5. Conclusions

The Standard Model

- Lepton and quark sectors: blue lines indicate the interactions permitted by the SM
- Of particular interest for this talk: lepton-photon interaction

$$\mathcal{L}_{a_\ell} = \overline{\ell} \underbrace{\left(a_\ell \right] \frac{e}{4m_\ell} \sigma_{\mu\nu} - \boxed{d_\ell \frac{i}{2} \sigma_{\mu\nu} \gamma_5} \ell F^{\mu\nu}}_{\text{Magnetic dipole}} \\ \text{Magnetic dipole} \\ \text{moment} \\ \text{Electric dipole} \\ \text{moment}$$

$\vec{\mu}=g\frac{e}{2m}\vec{S}$

Here, **e** is electric charge, **m** is particle mass and **g** is a dimensionless number parameterising the size of the magnetic moment

The Standard Model

$$\mathcal{L}_{a_\ell} = \overline{\ell} \left(\underbrace{a_\ell}_{4m_\ell} \frac{e}{\sigma_{\mu\nu}} - \underbrace{d_\ell}_{2} \overset{i}{\sigma_{\mu\nu}} \gamma_5 \right) \ell F^{\mu\nu}$$
 Magnetic dipole Electric dipole moment moment

- In Pauli non-relativistic theory, for the intrinsic magnetic moment of a particle **g** can be anything
- In Dirac's wave equation approach, **g=2** for elementary spin 1/2 particles
- In full QFT, calculable <u>corrections</u> to the g=2 result

$$a_{\ell} = \frac{g-2}{2}$$

$$\Delta a_{\ell} = a_{\ell}^{\exp} - a_{\ell}^{SM}$$

- Long-standing (recently updated) anomaly perhaps hinting at new physics that couples to muons
- Many papers investigate possible new physics explanations
- Other muonic anomalies corroborate the idea of new physics coupling to muons, e.g.

The muon g-2

$$\Delta a_{\ell} = a_{\ell}^{\exp} - a_{\ell}^{SM}$$

- Established precision test for the SM and QED:
 - 'Measuring' the fine structure constant, α, assumes:

$$a_e^{\rm SM}(\alpha) = a_e^{\rm Exp} \implies \alpha$$

- This would assume no anomaly! So we require a determination of $\,\alpha$ independent of g-2.
- Two conflicting experimental results for α , via interferometry experiments, disagree by more than 5 sigma:
 - 1. Using Cs, anomaly opposite sign to the muon
 - 2. Using Rb, anomaly (?) in the same sign as the muon

The electron g-2

Deviation from SM prediction	Significance
$\Delta a_{\mu} = (2.86 \pm 0.76) \times 10^{-9}$	4.2σ
$\Delta a_e^{ m Cs} = -(0.88 \pm 0.36) imes 10^{-12}$ Parker et al 1812.04130	
$\Delta a_e^{ m Rb} = (4.8 \pm 3.0) imes 10^{-13}$ Morel et al 2020, INSPIRE: 1837309	1.6σ

So far, no resolution to this disagreement

The g-2 anomalies

$$\mathcal{L}_{a_{\ell}} = \overline{\ell} \left(a_{\ell} \frac{e}{4m_{\ell}} \sigma_{\mu\nu} - d_{\ell} \frac{i}{2} \sigma_{\mu\nu} \gamma_5 \right) \ell F^{\mu\nu}$$

Magnetic dipole moment

$$\Delta a_{\ell} = a_{\ell}^{\text{exp}} - a_{\ell}^{\text{SM}}$$

Deviation from SM prediction	Significance
$\Delta a_{\mu} = (2.86 \pm 0.76) \times 10^{-9}$ $\Delta a_{e} = -(0.88 \pm 0.36) \times 10^{-12}$	4.2σ 2.5σ

While electron g-2 is still unresolved, we focus on the more significant anomaly, also because it is a more interesting problem to tackle.

The Problem

- Anomalies in the electron and muon magnetic dipole moments
- Deviations have opposite sign, but comparable magnitude
- Could there be a common origin via flavour-violating couplings?

- 1.The (g-2) puzzle: SM and beyond
- 2. Scalar LQ solutions
- 3. Overcoming hurdles via a coupling ansatz
- 4. Outline of key results
- 5. Conclusions

Symbol	$SU(3)_C\otimes SU(2)_L\otimes U(1)_Y$
$ ilde{S}_1$	$({f 3},{f 1},-4/3)$
S_1	(3, 1, -1/3)
S_3	$({f 3},{f 3},-1/3)$
\overline{S}_1	(3, 1, 2/3)
R_2	(3, 2, 7/6)
$ ilde{R}_2$	(3, 2, 1/6)

Scalar LQ models

- Leptoquarks (LQ) are hypothetical particles which directly couple SM leptons and quarks
- There are a finite set of scalar LQ (for a review, see arXiv: 1603.04993)
- LQ masses and Yukawa couplings between SM and BSM fields are generically *free* parameters, e.g.

Left-handed coupling

$$\mathcal{L}_{\ell} = \overline{\ell^{(c)}} \left[y^R P_R + y^L P_L \right] \ q \ \phi^{\dagger} + h.c.$$

Right-handed coupling

Mixed chiral scalar LQs

Left-handed coupling

$$\mathcal{L}_{\ell} = \overline{\ell^{(c)}} \left[y^R P_R + y^L P_L \right] \ q \ \phi^{\dagger} + h.c.$$

Right-handed coupling

Symbol	$SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$	Mixed chiral
$ ilde{S}_1$	(3, 1, -4/3)	X
S_1	(3, 1, -1/3)	✓
S_3	(3, 3, -1/3)	X
\overline{S}_1	$({f 3},{f 1},2/3)$	×
R_2	(3, 2, 7/6)	✓
\tilde{R}_2	(3, 2, 1/6)	×

The highlighted LQ are mixed-chiral

- Mixed-chiral LQ have both L and R couplings
- Could generate sizeable corrections to (g-2) at one-loop level (enhanced via internal quarkmass insertion)

Mixed chiral scalar LQs

$$\mathcal{L}_{\ell} = \overline{\ell^{(c)}} \left[y^R P_R + y^L P_L \right] q \phi^{\dagger} + h.c.$$

$$S_1$$
 (3, 1, -1/3) R_2 (3, 2, 7/6)

$$\Delta a_\ell = -\frac{3m_\ell}{8\pi^2 m_\phi^2} \sum_q \begin{bmatrix} m_\ell (|y_\ell^R|^2 + |y_\ell^L|^2)\kappa \\ \\ + m_q \mathrm{Re}(y_\ell^{L*} y_\ell^R)\kappa' \end{bmatrix}$$
 variable sign

For these two LQ, we can exploit this <u>variable sign term</u> to give flavour-dependent, opposite sign, corrections

- 1.The (g-2) puzzle: SM and beyond
- 2. Scalar LQ solutions
- 3. Overcoming hurdles via a coupling ansatz
- 4. Outline of key results
- 5. Conclusions

A flavour ansatz

Yukawa couplings with SM fields are generally *free* parameters, so we have some choices to make.

- I will preface this next discussion by saying that the what I'm about to discuss **isn't** showing a basisdependence of a physical result (that would be ludicrous!)
- The argument here is that: a choice of basis can affect how <u>clear</u> it is to make definitive claims about a model's viability.

A flavour ansatz

How easy is it to turn on or off couplings between particular flavours?

The answer lies in the choice of where I put the CKM.

$$\mathcal{L}_{\text{int}}^{S_1} = \left(\overline{L_L^c}\lambda_{LQ}Q_L + \overline{e_R^c}\lambda_{eu}u_R\right)S_1^{\dagger} + h.c.,$$

EWSB and rotating fields into mass-eigenstates

Recalling that:
$$V=\mathfrak{L}_u^\dagger \mathfrak{L}_d$$

$$\begin{array}{lll} \textbf{1.} & \mathfrak{R}_e\lambda_{eu}\mathfrak{R}_u\mapsto y^{Seu}, \quad \mathfrak{L}_e\lambda_{LQ}\mathfrak{L}_u\mapsto y^{SLQ} \\ \\ \mathcal{L}^{S_1}\supset y_{ij}^{SLQ} \left[\overline{e_{L,i}^c}u_{L,j}-V_{jk}\;\overline{\nu_{L,i}^c}d_{L,k}\right]S_1^\dagger \\ \\ \text{`Up-type'} & +y_{ij}^{Seu}\overline{e_{R,i}^c}u_{R,j}S_1^\dagger+h.c., \end{array}$$

$$\begin{array}{ll} \textbf{2.} & \\ \mathfrak{R}_e \lambda_{eu} \mathfrak{R}_u \mapsto y^{Seu}, \quad \underline{\mathfrak{L}_e \lambda_{LQ} \mathfrak{L}_d \mapsto y'^{SLQ}}, \\ \mathcal{L}^{S_1} \supset y'^{SLQ}_{ij} \left[V^{\dagger}_{jk} \overline{e^c_{L,i}} u_{L,k} - \ \overline{\nu^c_{L,i}} d_{L,j} \right] S^{\dagger}_1 \\ \text{`Down-type'} & + y^{Seu}_{ij} \overline{e^c_{R,i}} u_{R,j} S^{\dagger}_1 + h.c., \end{array}$$

'Up' and 'down' type bases

$$\begin{array}{ll} \textbf{1.} & \mathfrak{R}_e\lambda_{eu}\mathfrak{R}_u\mapsto y^{Seu}, \quad \mathfrak{L}_e\lambda_{LQ}\mathfrak{L}_u\mapsto y^{SLQ}\\ \\ \mathcal{L}^{S_1}\supset y_{ij}^{SLQ}\left[\overline{e_{L,i}^c}u_{L,j}-V_{jk}\;\overline{\nu_{L,i}^c}d_{L,k}\right]S_1^\dagger\\ \\ \text{`Up-type'} & +y_{ij}^{Seu}\overline{e_{R,i}^c}u_{R,j}S_1^\dagger+h.c., \end{array}$$

 Now imagine we want to switch-off a particular coupling: e.g. as above

We should guide our basis choice by looking at what couplings we want to control the most — motivated by observables and constraints

A downside of the 'down' type basis

$$\Delta a_\ell = -\frac{3m_\ell}{8\pi^2 m_\phi^2} \sum_q \left[m_\ell (|y_\ell^R|^2 + |y_\ell^L|^2) \kappa \right]$$

$$+ m_q \mathrm{Re}(y_\ell^{L*} y_\ell^R) \kappa'$$
variable sign

- If we *did* work in the down-type quark basis, this makes it hard for us to determine a viable zero texture for the Yukawas
- Why? It turns out that because of:
 - A. The enhancement of a top-quark in the loop
 - B. The strength of the MEG constraint $~\mu
 ightarrow e \gamma$

Even if just a `small' coupling to the top is generated for both lepton flavours, we hit the MEG limit —- **invalidating the model**

You can see how one may be tempted to rule out all scalar LQ models if you only looked in the down-type basis.

ℓ $\frac{q_i}{q_i}$ ℓ ℓ

$$\mathbf{y}^L \sim \begin{pmatrix} 0 & \mathbf{0} & 0 \\ 0 & 0 & \mathbf{0} \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{y}^R \sim \begin{pmatrix} 0 & \mathbf{0} & 0 \\ 0 & 0 & \mathbf{0} \\ 0 & 0 & 0 \end{pmatrix}$$

Establishing the models

Adopting the 'up-type' basis:

- Contribution to (g-2) of the electron is via a **charm**-containing loop
- Contribution to (g-2) of the muon is via a **top**-containing loop
- Constraints from MEG in particular avoided by having different intermediate SM quarks coupling for each g-2
- Restrict all NP couplings to <u>real values</u>.

$$\Delta a_{\ell}^{S_1} \sim -\frac{m_{\ell} m_q}{4\pi^2 m_{S_1}^2} \left[\frac{7}{4} - 2 \log \left(\frac{m_{S_1}}{m_q} \right) \right] \operatorname{Re}(y_{\ell q}^{L*} y_{\ell q}^R),$$

$$\Delta a_{\ell}^{R_2} \sim \frac{m_{\ell} m_q}{4\pi^2 m_{R_2}^2} \left[\frac{1}{4} - 2 \log \left(\frac{m_{R_2}}{m_q} \right) \right] \operatorname{Re}(y_{\ell q}^{L*} y_{\ell q}^R),$$

- 1.The (g-2) puzzle: SM and beyond
- 2. Scalar LQ solutions
- 3. Overcoming hurdles via a coupling ansatz
- 4. Outline of key results
- 5. Conclusions

Single mass scans

Now that we have two viable models, assessing constraints using two different scan methods:

Method 1: Fixed RH couplings around (g-2)

- 1. Logarithmically sample 2 x LH couplings
- 2. Calculate RH couplings according to (g-2), outputting real-value generating point closest to central values
- 3. Check generated RH coupling under perturbativity constraint.
 - 4. Check other constraints

Method 2: decoupled electron and muon sectors

separately sampling LH and RH couplings logarithmically

S1 Leptoquark: benchmark study

R2 Leptoquark: benchmark study

- 1.The (g-2) puzzle: SM and beyond
- 2. Scalar LQ solutions
- 3. Overcoming hurdles via a coupling ansatz
- 4. Outline of key results
- 5. Conclusions

Conclusions

Based on *Phys.Rev.D* 102 (2020) 7, 075037 • e-Print: 2002.12544 [hep-ph]

- We have argued the viability of single LQ simultaneous solutions to anomalies in g-2 of the electron and muon.
- Identified the two mixed chiral scalar LQ, capable of generating sign-dependent contributions to leptonic g-2 observables.
- LFV constraints can be avoided by allowing contribution to the electron g-2 from charm-containing loops, and muon g-2 from top-containing loops.
- Extending to complex couplings motivates consideration of EDMs as well as g-2 (manuscript in preparation)

Back-up Slides

Process	OBSERVABLE	LIMITS
$Z o \ell_i \ell_j$	$\{g_L^\mu,g_R^\mu\}$	$\{-0.2689(11), +0.2323(13)\}$
Z o u u	$N_ u$	2.9840(82)
$D^{\pm} \rightarrow e \nu$	Br	$< 8.8 \times 10^{-6}$
$D_s^{\pm} \to e \nu$	Br	$< 8.3 \times 10^{-5}$
$K^+ o \pi^+ \nu \nu$	Br	$(1.7 \pm 1.1) \times 10^{-10}$
$K_L^0 o e^+ e^-$	Br	$(9^{+6}_{-4}) \times 10^{-12}$
$pp o \ell\ell$	$ y_{12}^{Seu} $	$< 0.648~m_{\phi}/{ m TeV}$
	$ y_{12}^{SLQ} $	$< 0.537~m_{\phi}/{ m TeV}$
[44]	$ y_{12}^{ReQ} $	$< 0.393~m_{\phi}/{ m TeV}$
	$\left y_{12}^{RLu} ight $	$< 0.524~m_{\phi}/{ m TeV}$
	$ y_{23}^{ReQ} $	$< 0.904~m_{\phi}/{\rm TeV}$
$c ightarrow d_k \overline{e}_i u_j$	$\epsilon_{V_L}^{111}$	$\in [-0.52, 0.86] \times 10^{-2}$
	$\epsilon_{V_L}^{112}$	$\in [-0.28, 0.59] \times 10^{-2}$
[41]	$\{ \epsilon_{V_L}^{121} , \epsilon_{V_L}^{122} \}$	$\{<0.67, <0.42\} \times 10^{-2}$
	$\{ \epsilon_{S_L}^{111} , \epsilon_{S_L}^{112} \}$	$\{<0.72,<0.43\}\times10^{-2}$
	$\{ \epsilon_{S_L}^{211} , \epsilon_{S_L}^{212} \}$	$\{<1.1,<0.68\}\times10^{-2}$
	$\{ \epsilon_{T}^{111} , \epsilon_{T}^{112} \}$	$\{<4.3,<2.8\}\times10^{-3}$
	$\{ \epsilon_T^{211} , \epsilon_T^{212} \}$	$\{<6.6, <4.0\} \times 10^{-3}$

Model Lagranians

$$\mathcal{L}^{S_1} \supset y_{ij}^{SLQ} \left[\overline{e_{L,i}^c} u_{L,j} - V_{jk} \overline{\nu_{L,i}^c} d_{L,k} \right] S_1^{\dagger} + y_{ij}^{Seu} \overline{e_{R,i}^c} u_{R,j} S_1^{\dagger} + h.c.$$

$$\mathcal{L}^{R_2} \supset y_{ij}^{RLu} \left[\overline{\nu_{L,i}} u_{R,j} R_2^{2/3,\dagger} - \overline{e_{L,i}} u_{R,j} R_2^{5/3,\dagger} \right] + y_{ij}^{ReQ} \overline{e_{R,i}} \left[u_{L,j} R_2^{5/3,\dagger} + V_{jk} d_{L,k} R_2^{2/3,\dagger} \right]$$

Which zero texture?

$$\Delta a_{\ell} = -\frac{3m_{\ell}}{8\pi^2 m_{\phi}^2} \sum_{q} \left[m_{\ell} (|y_{\ell}^R|^2 + |y_{\ell}^L|^2) \kappa \right]$$

$$+ m_q \operatorname{Re}(y_\ell^{L*} y_\ell^R) \kappa' \Big].$$

$$\mathcal{L}_{\ell} = \overline{\ell^{(c)}} \left[y^R P_R + y^L P_L \right] q \phi^{\dagger} + h.c.$$

 To ensure we have the mass-enhanced mixed-chiral contribution, the zero **texture** of the LH and RH Yukawas should be identical

Texture
$$1 \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, Texture $2 \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Charm- muon Top- electron

OR

Charm- electron
Top- muon

Charmphilic solution to muon g-2 with leptoquarks, arxiv:1812.06851. Only possible to do muon g-2 within two sigma.